大厂面试:找出数组中第k大的数的最佳算法
wptr33 2024-12-13 16:37 25 浏览
一.前置条件
假如数组为a,大小为n,要找到数组a中第k大的数。
二.解决方案
1.使用任意一种排序算法(例如快速排序)将数组a进行从大到小的排序,则第n-k个数即为答案。
2.构造一个长度为k的数组,将前k个数复制过来并降序排序。然后依次将 k+1 到 n 位的数分别插入 k 长度的数组中并保持数组长度为k且降序排列。最终长度为k的数组的最后一个元素即是答案。
3.将数组的所有元素构造一个大顶堆,然后删除堆顶元素k次并重新构成大顶堆,则第k次操作后的堆顶元素即为答案。
4.用快速排序的思想不把数组元素全排序的优化算法。
1)先看一下快速排序(降序排序)的算法。
/**
快速排序主函数
a:要排序的数组
left:排序数组左边界索引
right:排序数组右边界索引
*/
public void quickSort(int a[], int left, int right) {
if (left < right) {
//算出基准元素索引值index
int index = partition(a, left, right);
//对低于index索引的数组递归排序
quickSort(a, left, index - 1);
//对高于index索引的数组递归排序
quickSort(a, index + 1, right);
}
}
//算出基准元素索引值,此索引值左侧值都大于基准元素值,此索引值右侧值都小于基准元素值
public int partition(int[] num, int left, int right) {
if (num == null || num.length <= 0 || left < 0 || right >= num.length) {
return 0;
}
//获取数组基准元素的下标
int prio = num[left + (right - left) / 2];
//从两端交替向中间扫描
while (left <= right) {
while (num[left] > prio)
left++;
while (num[right] < prio)
right--;
if (left <= right) {
//将不符合条件的元素值交换位置并继续扫描
swap(num, left, right);
left++;
right--;
}
}
return left;
}
//交换元素
public void swap(int[] num, int left, int right) {
int temp = num[left];
num[left] = num[right];
num[right] = temp;
}
2)我们选择数组区间 a[0…n-1]的中间位置的一个元素 a[n/2]作为 pivot,对数组 a[0…n-1]进行分区,这样数组就分成了三部分,a[0…p-1]、a[p]、a[p+1…n-1]。
如果 p+1=k,那 a[p]就是要求解的答案;如果 k>p+1, 说明第 k 大元素出现在 a[p+1…n-1]区间,我们再按照上面的思路递归的在 a[p+1…n-1]这个区间内查找。同理,如果 k<p+1,那就在 a[0…p-1]区间内递归查找。
3)所以改进后的代码如下:
public int quickSortKthLargest(int a[], int left, int right, int k) {
if (left < right) {
//算出基准元素索引值index
int index = partition(a, left, right);
//索引对应的值就是第k大的数
if(index+1==k){
return a[index];
}
//在索引左边继续查找
else if(index+1>k){
return quickSortKthLargest(a, left, index-1, k);
}
//在索引右边继续查找
else{
return quickSortKthLargest(a, index+1, right, k);
}
}else{
return -1;
}
}
5.在Python中,我们可以使用内置的heapq库来查找数组的第k大元素。heapq库实现了一个堆数据结构,我们可以利用堆的性质来找到数组的第k大元素。
代码如下:
# 返回第k大元素
def get_kth_largest(a, k):
# heapq.nlargest(k, a)会返回数组a中最大的k个元素,
# 然后我们通过[-1]来取得这k个元素中的最后一个,也就是第k大的元素。
return heapq.nlargest(k, a)[-1]
6.使用最小堆来查找第k大的元素。
首先构建一个空的最小堆。遍历数组a,如果堆的大小小于k,我们就把当前元素加入堆中。如果堆的大小已经达到了k,我们就比较当前元素和堆顶元素(也就是堆中的最小元素),如果当前元素大于堆顶元素,我们就把堆顶元素替换为当前元素,再重新调整最小堆结构。这样,当遍历完整个数组后,堆顶元素就是数组的第k大元素(即是大小为k的最小堆(保存了数组中的最大的k个数)的最小元素)。
代码如下:
def get_kth_largest(a, k):
heap = []
for num in a:
# 若最小堆大小小于k,则将元素插入最小堆
if len(heap) < k:
heapq.heappush(heap, num)
else:
# 若元素大于最小堆堆顶元素,则插入最小堆并重新排列
if num > heap[0]:
heapq.heapreplace(heap, num)
# 堆顶元素即为数组的第k大元素
return heap[0]
致力于C、C++、Java、Kotlin、Android、Shell、JavaScript、TypeScript、Python等编程技术的技巧经验分享。
若作品对您有帮助,请关注、分享、点赞、收藏、在看、喜欢。您的支持是我们为您提供帮助的最大动力。
相关推荐
- MySQL进阶五之自动读写分离mysql-proxy
-
自动读写分离目前,大量现网用户的业务场景中存在读多写少、业务负载无法预测等情况,在有大量读请求的应用场景下,单个实例可能无法承受读取压力,甚至会对业务产生影响。为了实现读取能力的弹性扩展,分担数据库压...
- 3分钟短文 | Laravel SQL筛选两个日期之间的记录,怎么写?
-
引言今天说一个细分的需求,在模型中,或者使用laravel提供的EloquentORM功能,构造查询语句时,返回位于两个指定的日期之间的条目。应该怎么写?本文通过几个例子,为大家梳理一下。学习时...
- 一文由浅入深带你完全掌握MySQL的锁机制原理与应用
-
本文将跟大家聊聊InnoDB的锁。本文比较长,包括一条SQL是如何加锁的,一些加锁规则、如何分析和解决死锁问题等内容,建议耐心读完,肯定对大家有帮助的。为什么需要加锁呢?...
- 验证Mysql中联合索引的最左匹配原则
-
后端面试中一定是必问mysql的,在以往的面试中好几个面试官都反馈我Mysql基础不行,今天来着重复习一下自己的弱点知识。在Mysql调优中索引优化又是非常重要的方法,不管公司的大小只要后端项目中用到...
- MySQL索引解析(联合索引/最左前缀/覆盖索引/索引下推)
-
目录1.索引基础...
- 你会看 MySQL 的执行计划(EXPLAIN)吗?
-
SQL执行太慢怎么办?我们通常会使用EXPLAIN命令来查看SQL的执行计划,然后根据执行计划找出问题所在并进行优化。用法简介...
- MySQL 从入门到精通(四)之索引结构
-
索引概述索引(index),是帮助MySQL高效获取数据的数据结构(有序),在数据之外,数据库系统还维护者满足特定查询算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构...
- mysql总结——面试中最常问到的知识点
-
mysql作为开源数据库中的榜一大哥,一直是面试官们考察的重中之重。今天,我们来总结一下mysql的知识点,供大家复习参照,看完这些知识点,再加上一些边角细节,基本上能够应付大多mysql相关面试了(...
- mysql总结——面试中最常问到的知识点(2)
-
首先我们回顾一下上篇内容,主要复习了索引,事务,锁,以及SQL优化的工具。本篇文章接着写后面的内容。性能优化索引优化,SQL中索引的相关优化主要有以下几个方面:最好是全匹配。如果是联合索引的话,遵循最...
- MySQL基础全知全解!超详细无废话!轻松上手~
-
本期内容提醒:全篇2300+字,篇幅较长,可搭配饭菜一同“食”用,全篇无废话(除了这句),干货满满,可收藏供后期反复观看。注:MySQL中语法不区分大小写,本篇中...
- 深入剖析 MySQL 中的锁机制原理_mysql 锁详解
-
在互联网软件开发领域,MySQL作为一款广泛应用的关系型数据库管理系统,其锁机制在保障数据一致性和实现并发控制方面扮演着举足轻重的角色。对于互联网软件开发人员而言,深入理解MySQL的锁机制原理...
- Java 与 MySQL 性能优化:MySQL分区表设计与性能优化全解析
-
引言在数据库管理领域,随着数据量的不断增长,如何高效地管理和操作数据成为了一个关键问题。MySQL分区表作为一种有效的数据管理技术,能够将大型表划分为多个更小、更易管理的分区,从而提升数据库的性能和可...
- MySQL基础篇:DQL数据查询操作_mysql 查
-
一、基础查询DQL基础查询语法SELECT字段列表FROM表名列表WHERE条件列表GROUPBY分组字段列表HAVING分组后条件列表ORDERBY排序字段列表LIMIT...
- MySql:索引的基本使用_mysql索引的使用和原理
-
一、索引基础概念1.什么是索引?索引是数据库表的特殊数据结构(通常是B+树),用于...
- 一周热门
-
-
C# 13 和 .NET 9 全知道 :13 使用 ASP.NET Core 构建网站 (1)
-
程序员的开源月刊《HelloGitHub》第 71 期
-
详细介绍一下Redis的Watch机制,可以利用Watch机制来做什么?
-
假如有100W个用户抢一张票,除了负载均衡办法,怎么支持高并发?
-
Java面试必考问题:什么是乐观锁与悲观锁
-
如何将AI助手接入微信(打开ai手机助手)
-
redission YYDS spring boot redission 使用
-
SparkSQL——DataFrame的创建与使用
-
一文带你了解Redis与Memcached? redis与memcached的区别
-
如何利用Redis进行事务处理呢? 如何利用redis进行事务处理呢英文
-
- 最近发表
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)
- c语言 switch (34)
- git commit (34)