Redis Scan命令踩坑笔记 redis-cli scan
wptr33 2024-12-18 17:32 19 浏览
前记
大部分人在接触Redis时就都会了解到Redis是以单线程的形式处理用户命令,导致O(N)的命令有极大的几率会阻塞Redis,所以在使用Redis时需要放弃一些O(n)命令的使用,比如不要去使用KEYS命令而应该使用SCAN命令,然而SCAN命令也有一些坑。
1.踩到的坑
为了减少MySQL的压力,在部分变动比较少的表会通过Redis套上缓存,如下代码:
Python复制代码@cache(key_name="demo_system:user", expire=10)
def get_user(user_id: str) -> UserDict:
with conn.cursor() as cursor:
cursor.execute("SELECT * FROM user WHERE user_id=%s", (user_id, ))
return cursor.fetchone() or ()
这段代码中会有一个cache装饰器,它每次被调用时会把key_name与传入的参数绑定为一个Key,比如某次调用的参数user_id为10086时,生成的Key为demo_system:user:10086。 它在执行时会先去Redis检查一下该Key是否存在,如果存在就直接返回数据,如果不存在就进入get_user函数通过MySQL获取user_id为10086的数据,不过在返回数据10086的数据之前会先缓存到对应的Key中。
可见这个实现非常简单,也没有什么坑,但是当遇到需要按照模糊匹配批量删除缓存的需求时,问题也就跟着过来了,因为Redis本身并没有按照模糊匹配再批量删除的方法,只能先通过Redis的KEYS或者SCAN的模糊匹配查找一批Key,然后再通过DEL命令批量删除。 为了防止Redis阻塞,大都会选用SCAN来进行模糊匹配并通过DEL命令删除,使用起来也简单,代码如下:
Python复制代码def delete_cache_start_with(cache_name: str) -> None:
"""根据前缀删除批量缓存"""
cache_name += "*"
cache_name_list = [item for item in redis.scan_iter(cache_name)]
if cache_name_list:
redis.delete(*cache_name_list)
delete_cache_start_with("demo_system:user")
通过这段代码就可以批量删除与demo_system:user相关的Key了,在测试环境验证基本也不会出现问题,但是当上到生产环境时就会发现拥有批量删除逻辑的接口在某些情况下它的响应时长会变得很长,比如我在排查某个业务时看到的Jaeger数据如下图:
图中展示的是本次调用执行了多次SCAN命令,同时通过捕获的命令也可以知道SCAN的索引是一直在变的,而且不会重复,这意味着SCAN的执行逻辑是正常的,但是需要执行很多次才能获得最终的结果,所以导致接口的响应时长非常的长。
2.解决方案
当前的问题是当Redis的Key数量过多时,SCAN的扫描次数也变多了,导致服务需要向Redis发起多次IO交互,而每一次IO交互都需要一定的时间开销,最终导致接口响应时长变长, 所以解决这个问题的核心就变为在每次执行批量删除时尽量的减少SCAN命令次数(最终结果集不变的情况下)。
由于扫描次数是由SCAN命令中的COUNT大小和要扫描的Key总量这两个条件决定的,所以分别衍生出两套解决方案。
2.1.修改COUNT参数
如果代码中有大量依赖于SCAN命令且比较难更改的情况或者是代码中是使用了类似于django.core.cache的cache.delete_pattern封装函数,那么直接修改代码会非常麻烦,这时可以选择通过改大COUNT参数来减少SCAN命令的次数。
不过COUNT参数也不能太大,根据KeyDB中的描述在一个包含500万Key的Redis执行SCAN时,不同的COUNT参数与通过SCAN扫描所有Key的消耗时间的关系如下图:
通过图可以看到,当COUNT大于1000时,通过SCAN扫码所有Key的消耗时间变化已经不是很大,但是我们也需要考虑COUNT过大时可能会对Redis的负载性能有影响,所以我们需要针对自己使用的Redis服务进行压测后,选择最适合当前Redis服务的COUNT(一般建议在100-1000之间)。
2.2.创建一个存放缓存Key的Bucket
由于缓存的Key的数量远远小于业务Key的数量,如果能做到只扫描缓存的Key而不是所有Key,那么SCAN命令执行的次数就会少了很多很多。 而这个解决方案就是通过创建一个单独的Bucket来存放缓存的Key,然后在模糊匹配时只扫描Bucket中的Key,最后在执行删除时除了删除业务Key外还需要同时删除Bucket中的Key。至于这个实现这个Bucket的方案有很多种,比如进程中的内存里或者一个公有文件中,但是Bucket的最佳实现还得是Redis的SET。
这个方案的实现最好是基于Redis客户端库再封装一层统一的调用,比如上面示例的cache装饰器,这个装饰器的核心逻辑如下:
Python复制代码# 省去装饰的逻辑
def _cache(func: Callable, key: str) -> Any:
result: Any = redis.get(key)
if not result:
result = func()
redis.set(key, result)
return result
它会先判断key是否存在Redis中,如果存在就直接返回,不存在则调用函数获取结果,再把结果存入Redis后并返回。
在进行改造时,只需要先指定Bucket的Key名,然后在调用redis.set时把缓存的key存入到Bucket中,如下:
Python复制代码bucket_key: str = "demo_system:bucket"
def _cache(func: Callable, key: str) -> Any:
result: Any = redis.get(key)
if not result:
result = func()
redis.sadd(bucket_key, key) # <-- 新增语句,为了保持双写成功,建议使用pipe,否则一定要放在set之前
redis.set(key, result)
return result
然后删除的逻辑也需要修改,首先是把扫描Key从扫描Redis全局改为扫描Bucket,然后在删除Key时顺便把Key也从Bucket中移除,代码如下:
Python复制代码def delete_cache_start_with(cache_name: str) -> None:
"""根据前缀删除批量缓存"""
cache_name += "*"
cache_name_list = [item for item in redis.sscan_iter(bucket_key, match=cache_name)] # <--修改点
if cache_name_list:
redis.delete(*cache_name_list)
redis.srem(*cache_name_list) # <--同样建议使用pipe,如果没有则必须放在delete后
delete_cache_start_with("demo_system:user")
这样一来就改造完成了,经过在线上跑了一段时间后,所有接口的响应时间并不会受删除Key的逻辑影响。
3.其他注意点
在翻阅Redis关于SCAN命令的文档后发现有如下这一段描述:
Scan guarantees The SCAN command, and the other commands in the SCAN family, are able to provide to the user a set of guarantees associated to full iterations.
A full iteration always retrieves all the elements that were present in the collection from the start to the end of a full iteration. This means that if a given element is inside the collection when an iteration is started, and is still there when an iteration terminates, then at some point SCAN returned it to the user. A full iteration never returns any element that was NOT present in the collection from the start to the end of a full iteration. So if an element was removed before the start of an iteration, and is never added back to the collection for all the time an iteration lasts, SCAN ensures that this element will never be returned. H A given element may be returned multiple times. It is up to the application to handle the case of duplicated elements, for example only using the returned elements in order to perform operations that are safe when re-applied multiple times.
通过描述可以发现SCAN命令会保证扫描出在遍历开始之前就已经存在Redis的值,但是如果有一个值是在遍历开始之后才加入的,那么SCAN无法保证一定能被扫描出来,不过对于当前的删除缓存Key场景并没有什么影响。此外SCAN多次扫描的结果可能有重复的,需要我们在程序中把扫码的结果重新整理并去重。
作者:so1n
链接:https://juejin.cn/post/7250382724878975033
相关推荐
- Python自动化脚本应用与示例(python办公自动化脚本)
-
Python是编写自动化脚本的绝佳选择,因其语法简洁、库丰富且跨平台兼容性强。以下是Python自动化脚本的常见应用场景及示例,帮助你快速上手:一、常见自动化场景文件与目录操作...
- Python文件操作常用库高级应用教程
-
本文是在前面《Python文件操作常用库使用教程》的基础上,进一步学习Python文件操作库的高级应用。一、高级文件系统监控1.1watchdog库-实时文件系统监控安装与基本使用:...
- Python办公自动化系列篇之六:文件系统与操作系统任务
-
作为高效办公自动化领域的主流编程语言,Python凭借其优雅的语法结构、完善的技术生态及成熟的第三方工具库集合,已成为企业数字化转型过程中提升运营效率的理想选择。该语言在结构化数据处理、自动化文档生成...
- 14《Python 办公自动化教程》os 模块操作文件与文件夹
-
在日常工作中,我们经常会和文件、文件夹打交道,比如将服务器上指定目录下文件进行归档,或将爬虫爬取的数据根据时间创建对应的文件夹/文件,如果这些还依靠手动来进行操作,无疑是费时费力的,这时候Pyt...
- python中os模块详解(python os.path模块)
-
os模块是Python标准库中的一个模块,它提供了与操作系统交互的方法。使用os模块可以方便地执行许多常见的系统任务,如文件和目录操作、进程管理、环境变量管理等。下面是os模块中一些常用的函数和方法:...
- 21-Python-文件操作(python文件的操作步骤)
-
在Python中,文件操作是非常重要的一部分,它允许我们读取、写入和修改文件。下面将详细讲解Python文件操作的各个方面,并给出相应的示例。1-打开文件...
- 轻松玩转Python文件操作:移动、删除
-
哈喽,大家好,我是木头左!Python文件操作基础在处理计算机文件时,经常需要执行如移动和删除等基本操作。Python提供了一些内置的库来帮助完成这些任务,其中最常用的就是os模块和shutil模块。...
- Python 初学者练习:删除文件和文件夹
-
在本教程中,你将学习如何在Python中删除文件和文件夹。使用os.remove()函数删除文件...
- 引人遐想,用 Python 获取你想要的“某个人”摄像头照片
-
仅用来学习,希望给你们有提供到学习上的作用。1.安装库需要安装python3.5以上版本,在官网下载即可。然后安装库opencv-python,安装方式为打开终端输入命令行。...
- Python如何使用临时文件和目录(python目录下文件)
-
在某些项目中,有时候会有大量的临时数据,比如各种日志,这时候我们要做数据分析,并把最后的结果储存起来,这些大量的临时数据如果常驻内存,将消耗大量内存资源,我们可以使用临时文件,存储这些临时数据。使用标...
- Linux 下海量文件删除方法效率对比,最慢的竟然是 rm
-
Linux下海量文件删除方法效率对比,本次参赛选手一共6位,分别是:rm、find、findwithdelete、rsync、Python、Perl.首先建立50万个文件$testfor...
- Python 开发工程师必会的 5 个系统命令操作库
-
当我们需要编写自动化脚本、部署工具、监控程序时,熟练操作系统命令几乎是必备技能。今天就来聊聊我在实际项目中高频使用的5个系统命令操作库,这些可都是能让你效率翻倍的"瑞士军刀"。一...
- Python常用文件操作库使用详解(python文件操作选项)
-
Python生态系统提供了丰富的文件操作库,可以处理各种复杂的文件操作需求。本教程将介绍Python中最常用的文件操作库及其实际应用。一、标准库核心模块1.1os模块-操作系统接口主要功能...
- 11. 文件与IO操作(文件io和网络io)
-
本章深入探讨Go语言文件处理与IO操作的核心技术,结合高性能实践与安全规范,提供企业级解决方案。11.1文件读写11.1.1基础操作...
- Python os模块的20个应用实例(python中 import os模块用法)
-
在Python中,...
- 一周热门
-
-
C# 13 和 .NET 9 全知道 :13 使用 ASP.NET Core 构建网站 (1)
-
因果推断Matching方式实现代码 因果推断模型
-
git pull命令使用实例 git pull--rebase
-
面试官:git pull是哪两个指令的组合?
-
git 执行pull错误如何撤销 git pull fail
-
git pull 和git fetch 命令分别有什么作用?二者有什么区别?
-
git fetch 和git pull 的异同 git中fetch和pull的区别
-
git pull 之后本地代码被覆盖 解决方案
-
还可以这样玩?Git基本原理及各种骚操作,涨知识了
-
git命令之pull git.pull
-
- 最近发表
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)
- c语言 switch (34)
- git commit (34)