百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT技术 > 正文

大数据Hadoop之——Spark集群部署(Standalone)

wptr33 2024-12-20 19:03 15 浏览

一、Spark概述

Spark基础概念和原理讲解可以参考我上篇博文:大数据Hadoop之——计算引擎Spark

二、Spark的运行模式

1)Standalone(本章讲解)

独立模式,自己独立一套集群(master/client/slave),Spark 原生的简单集群管理器, 自带完整的服务, 可单独部署到一个集群中,无需依赖任何其他资源管理系统, 使用 Standalone 可以很方便地搭建一个集群,一般在公司内部没有搭建其他资源管理框架的时候才会使用。缺点:资源不利于充分利用

2)Mesos

一个强大的分布式资源管理框架,它允许多种不同的框架部署在其上,包括 yarn,由于mesos这种方式目前应用的比较少,这里没有记录mesos的部署方式。

3)YARN(推荐)

统一的资源管理机制, 在上面可以运行多套计算框架, 如map reduce、storm,spark、flink 等, 根据 driver 在集群中的位置不同,分为 yarn client 和 yarn cluster,其实本质就是drive不同。企业里用得最多的一种模式。这种模式环境部署,已经在大数据Hadoop之——计算引擎Spark博文中讲过,这里就不重复了。

yarn Client模式:Driver运行在本地,适合交互调试yarn Cluster模式:Driver运行在集群(AM),正式提交任务的模式(remote)

4)K8S(新模式)

K8S 是 Spark 上全新的集群管理和调度系统。由于在实际生产环境下使用的绝大多数的集群管理器是 ON YARN模式,因此我们目前最主要还是关注ON YARN模式,ON K8S模式了解就行,有兴趣的小伙伴可以试试,工作模式如下图所示:

Spark 的运行模式取决于传递给 SparkContext 的 MASTER 环境变量的值, 个别模式还需要辅助的程序接口来配合使用,目前支持的 Master 字符串及 URL 包括:

--deploy-mode:是否将驱动程序(driver)部署在工作节点(cluster)上,或作为外部客户机(client)本地部署(默认值:client)。

  • local:在本地运行,只有一个工作进程,无并行计算能力
  • local[K]:在本地运行,有 K 个工作进程,通常设置 K 为机器的CPU 核心数量
  • local[*]:在本地运行,工作进程数量等于机器的 CPU 核心数量
  • spark://HOST:PORT:以 Standalone 模式运行,这是 Spark 自身提供的集群运行模式,默认端口号: 7077
  • mesos://HOST:PORT:在 Mesos 集群上运行,Driver 进程和 Worker 进程运行在 Mesos 集群上,部署模式必须使用固定值:--deploy-mode cluster
  • yarn:在yarn集群上运行,依赖于hadoop集群,yarn资源调度框架,将应用提交给yarn,在ApplactionMaster(相当于Stand alone模式中的Master)中运行driver,在集群上调度资源,开启excutor执行任务。
  • k8s:在k8s集群上运行

三、Standalone 模式运行机制

Standalone 集群有四个重要组成部分, 分别是:

  • Driver: 是一个进程,我们编写的 Spark 应用程序就运行在 Driver 上, 由Driver 进程执行;
  • Master:是一个进程,主要负责资源的调度和分配,并进行集群的监控等职责;
  • Worker:是一个进程,一个 Worker 运行在集群中的一台服务器上,主要负责两个职责,一个是用自己的内存存储 RDD 的某个或某些 partition;另一个是启动其他进程和线程(Executor) ,对 RDD 上的 partition 进行并行的处理和计算。
  • Executor:是一个进程, 一个 Worker 上可以运行多个 Executor, Executor 通过启动多个线程( task)来执行对 RDD 的 partition 进行并行计算,也就是执行我们对 RDD 定义的例如 map、flatMap、reduce 等算子操作。

1)Standalone Client 模式

  • 在Standalone Client模式下,Driver在任务提交的本地机器上运行,
  • Driver启动后向Master注册应用程序,Master根据submit脚本的资源需求找到内部资源至少可以启动一个Executor的所有Worker,
  • 然后在这些Worker之间分配Executor,Worker上的Executor启动后会向Driver反向注册,所有的Executor注册完成后,
  • Driver开始执行main函数,之后执行到Action算子时,开始划分stage,每个stage生成对应的taskSet,之后将task分发到各个Executor上执行。

2)Standalone Cluster 模式

  • 在 Standalone Cluster 模式下,任务提交后,Master 会找到一个 Worker 启动 Driver进程,
  • Driver 启动后向 Master 注册应用程序,
  • Master 根据 submit 脚本的资源需求找到内部资源至少可以启动一个 Executor 的所有 Worker,
  • 然后在这些 Worker 之间分配 Executor,Worker 上的 Executor 启动后会向 Driver 反向注册,
  • 所有的 Executor 注册完成后,Driver 开始执行 main 函数,之后执行到 Action 算子时,开始划分 stage,每个 stage 生成对应的 taskSet,之后将 task 分发到各个 Executor 上执行。

【 注意】Standalone的两种模式下(client/Cluster),Master在接到Driver注册Spark应用程序的请求后,会获取其所管理的剩余资源能够启动一个Executor的所有Worker,然后在这些Worker之间分发Executor,此时的分发只考虑Worker上的资源是否足够使用,直到当前应用程序所需的所有Executor都分配完毕,Executor反向注册完毕后,Driver开始执行main程序。

四、Spark 集群安装(Standalone)

1)机器及角色划分


2)三台机器安装JDK环境

之前安装Hadoop集群的时候已经安装过了,这里就略过了,不清楚的可以参考我之前的文章:大数据Hadoop原理介绍+安装+实战操作(HDFS+YARN+MapReduce)

3)下载

Spark下载地址:http://spark.apache.org/downloads.html

这里需要注意版本,我的hadoop版本是3.3.1,这里spark就下载最新版本的3.2.0,而Spark3.2.0依赖的Scala的2.13,所以后面用到Scala编程时注意Scala的版本。

$ cd /opt/bigdata/hadoop/software
# 下载
$ wget https://dlcdn.apache.org/spark/spark-3.2.0/spark-3.2.0-bin-hadoop3.2.tgz
# 解压
$ tar -zxvf spark-3.2.0-bin-hadoop3.2.tgz -C /opt/bigdata/hadoop/server/
# 修改安装目录名称
$ cp -r /opt/bigdata/hadoop/server/spark-3.2.0-bin-hadoop3.2 /opt/bigdata/hadoop/server/spark-standalone-3.2.0-bin-hadoop3.2

4)配置spark

1、配置slaves文件

$ cd /opt/bigdata/hadoop/server/spark-standalone-3.2.0-bin-hadoop3.2/conf
$ cp workers.template workers
# slaves文件内容如下:
hadoop-node1
hadoop-node2
hadoop-node3

hadoop-node1即是master,也是worker

2、配置spark-env.sh

$ cd /opt/bigdata/hadoop/server/spark-standalone-3.2.0-bin-hadoop3.2/conf
# 创建data目录(所有节点都得创建这个目录)
$ mkdir -p /opt/bigdata/hadoop/data/spark-standalone
# copy一份环境变量文件
$ cp spark-env.sh.template spark-env.sh
# 加入以下内容:
export SPARK_MASTER_HOST=hadoop-node1
export SPARK_LOCAL_DIRS=/opt/bigdata/hadoop/data/spark-standalone

3、配置spark-defaults.conf 这里不做修改,如果需要修改,自行修改就行,默认端口7077

$ cp spark-defaults.conf.template spark-defaults.conf
$ cat spark-defaults.conf

5)将配置好的包copy另外两台集群

$ scp -r spark-standalone-3.2.0-bin-hadoop3.2 hadoop-node2:/opt/bigdata/hadoop/server/
$ scp -r spark-standalone-3.2.0-bin-hadoop3.2 hadoop-node3:/opt/bigdata/hadoop/server/

5)启动

1、启动Master(在hadoop-node1节点上执行)

$ cd /opt/bigdata/hadoop/server/spark-standalone-3.2.0-bin-hadoop3.2/sbin
$ ./start-master.sh
# 查看进程端口,spark master web ui 默认端口为8080
$ ss -tnlp|grep :8080
# 如果端口冲突,修改start-master.sh脚本里的端口即可
$ grep SPARK_MASTER_WEBUI_PORT start-master.sh

访问spark master web ui:http://hadoop-node1:8080

2、启动Worker节点(在所有节点上都执行)

$ cd /opt/bigdata/hadoop/server/spark-standalone-3.2.0-bin-hadoop3.2/sbin
$ ./start-worker.sh spark://hadoop-node1:7077

五、测试验证

spark-submit 详细参数说明:

  • --master:master 的地址,提交任务到哪里执行,例如 spark://host:port, yarn, local
  • --deploy-mode:在本地 (client) 启动 driver 或在 cluster 上启动,默认是 client
  • --class:应用程序的主类,仅针对 java 或 scala 应用
  • --name:应用程序的名称
  • --jars:用逗号分隔的本地 jar 包,设置后,这些 jar 将包含在 driver 和 executor 的 classpath 下
  • --packages:包含在driver 和executor 的 classpath 中的 jar 的 maven 坐标
  • --exclude-packages:为了避免冲突 而指定不包含的 package
  • --repositories:远程 repository
  • --conf PROP=VALUE:指定 spark 配置属性的值, 例如 -conf spark.executor.extraJavaOptions="-XX:MaxPermSize=256m"
  • --properties-file:加载的配置文件,默认为 conf/spark-defaults.conf
  • --driver-memory:Driver内存,默认 1G
  • --driver-java-options:传给 driver 的额外的库路径
  • --driver-class-path:传给 driver 的额外的类路径
  • --driver-cores:Driver 的核数,默认是1。在 yarn 或者 standalone 下使用
  • --executor-memory:每个 executor 的内存,默认是1G
  • --total-executor-cores:所有 executor 总共的核数。仅仅在 mesos 或者 standalone 下使用
  • --num-executors:启动的 executor 数量。默认为2。在 yarn 下使用
  • --executor-core:每个 executor 的核数。在yarn或者standalone下使用

1)driver client模式(--deploy-mode client)

$ cd /opt/bigdata/hadoop/server/spark-standalone-3.2.0-bin-hadoop3.2/bin
$ ./spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://hadoop-node1:7077 \
--deploy-mode client \
--driver-memory 1G \
--executor-memory 1G \
--total-executor-cores 2 \
--executor-cores 1 \
/opt/bigdata/hadoop/server/spark-standalone-3.2.0-bin-hadoop3.2/examples/jars/spark-examples_2.12-3.2.0.jar 10

这种模式运行结果,直接在客户端显示出来了。

2)driver cluster模式(--deploy-mode cluster)

$ cd /opt/bigdata/hadoop/server/spark-standalone-3.2.0-bin-hadoop3.2/bin
$ ./spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://hadoop-node1:7077 \
--deploy-mode cluster \
--driver-memory 1G \
--executor-memory 1G \
--total-executor-cores 2 \
--executor-cores 1 \
/opt/bigdata/hadoop/server/spark-standalone-3.2.0-bin-hadoop3.2/examples/jars/spark-examples_2.12-3.2.0.jar 10

这种模式基本上没什么输出信息,需要登录web页面查看

查看driver日志信息

最终在driver日志里查看运行结果了。

【温馨提示】目前企业里用的最多的模式还是on yarn模式,Standalone模式了解就行。

相关推荐

Python自动化脚本应用与示例(python办公自动化脚本)

Python是编写自动化脚本的绝佳选择,因其语法简洁、库丰富且跨平台兼容性强。以下是Python自动化脚本的常见应用场景及示例,帮助你快速上手:一、常见自动化场景文件与目录操作...

Python文件操作常用库高级应用教程

本文是在前面《Python文件操作常用库使用教程》的基础上,进一步学习Python文件操作库的高级应用。一、高级文件系统监控1.1watchdog库-实时文件系统监控安装与基本使用:...

Python办公自动化系列篇之六:文件系统与操作系统任务

作为高效办公自动化领域的主流编程语言,Python凭借其优雅的语法结构、完善的技术生态及成熟的第三方工具库集合,已成为企业数字化转型过程中提升运营效率的理想选择。该语言在结构化数据处理、自动化文档生成...

14《Python 办公自动化教程》os 模块操作文件与文件夹

在日常工作中,我们经常会和文件、文件夹打交道,比如将服务器上指定目录下文件进行归档,或将爬虫爬取的数据根据时间创建对应的文件夹/文件,如果这些还依靠手动来进行操作,无疑是费时费力的,这时候Pyt...

python中os模块详解(python os.path模块)

os模块是Python标准库中的一个模块,它提供了与操作系统交互的方法。使用os模块可以方便地执行许多常见的系统任务,如文件和目录操作、进程管理、环境变量管理等。下面是os模块中一些常用的函数和方法:...

21-Python-文件操作(python文件的操作步骤)

在Python中,文件操作是非常重要的一部分,它允许我们读取、写入和修改文件。下面将详细讲解Python文件操作的各个方面,并给出相应的示例。1-打开文件...

轻松玩转Python文件操作:移动、删除

哈喽,大家好,我是木头左!Python文件操作基础在处理计算机文件时,经常需要执行如移动和删除等基本操作。Python提供了一些内置的库来帮助完成这些任务,其中最常用的就是os模块和shutil模块。...

Python 初学者练习:删除文件和文件夹

在本教程中,你将学习如何在Python中删除文件和文件夹。使用os.remove()函数删除文件...

引人遐想,用 Python 获取你想要的“某个人”摄像头照片

仅用来学习,希望给你们有提供到学习上的作用。1.安装库需要安装python3.5以上版本,在官网下载即可。然后安装库opencv-python,安装方式为打开终端输入命令行。...

Python如何使用临时文件和目录(python目录下文件)

在某些项目中,有时候会有大量的临时数据,比如各种日志,这时候我们要做数据分析,并把最后的结果储存起来,这些大量的临时数据如果常驻内存,将消耗大量内存资源,我们可以使用临时文件,存储这些临时数据。使用标...

Linux 下海量文件删除方法效率对比,最慢的竟然是 rm

Linux下海量文件删除方法效率对比,本次参赛选手一共6位,分别是:rm、find、findwithdelete、rsync、Python、Perl.首先建立50万个文件$testfor...

Python 开发工程师必会的 5 个系统命令操作库

当我们需要编写自动化脚本、部署工具、监控程序时,熟练操作系统命令几乎是必备技能。今天就来聊聊我在实际项目中高频使用的5个系统命令操作库,这些可都是能让你效率翻倍的"瑞士军刀"。一...

Python常用文件操作库使用详解(python文件操作选项)

Python生态系统提供了丰富的文件操作库,可以处理各种复杂的文件操作需求。本教程将介绍Python中最常用的文件操作库及其实际应用。一、标准库核心模块1.1os模块-操作系统接口主要功能...

11. 文件与IO操作(文件io和网络io)

本章深入探讨Go语言文件处理与IO操作的核心技术,结合高性能实践与安全规范,提供企业级解决方案。11.1文件读写11.1.1基础操作...

Python os模块的20个应用实例(python中 import os模块用法)

在Python中,...