百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT技术 > 正文

Redis 很屌,不懂使用规范就糟蹋了

wptr33 2024-12-25 16:01 27 浏览

哥,昨天我被公司 Leader 批评了。

我在单身红娘婚恋类型互联网公司工作,在双十一推出下单就送女朋友的活动。

谁曾想,凌晨 12 点之后,用户量暴增,出现了一个技术故障,用户无法下单,当时老大火冒三丈!

经过查找发现 Redis 报 Could not get a resource from the pool。

获取不到连接资源,并且集群中的单台 Redis 连接量很高。

于是各种更改最大连接数、连接等待数,虽然报错信息频率有所缓解,但还是持续报错。

后来经过线下测试,发现存放 Redis 中的字符数据很大,平均 1s 返回数据。

哥,可以分享下使用 Redis 的规范么?我想做一个唯快不破的真男人!

通过 Redis 为什么这么快?这篇文章我们知道 Redis 为了高性能和节省内存费劲心思。

所以,只有规范的使用 Redis,才能实现高性能和节省内存,否则再屌的 Redis 也禁不起我们瞎折腾。

Redis 使用规范围绕如下几个纬度展开:

  • 键值对使用规范;
  • 命令使用规范;
  • 数据保存规范;
  • 运维规范。

键值对使用规范

有两点需要注意:

  1. 好的 key 命名,才能提供可读性强、可维护性高的 key,便于定位问题和寻找数据。
  2. value要避免出现 bigkey、选择高效的序列化和压缩、使用对象共享池、选择高效恰当的数据类型(可参考《Redis 实战篇:巧用数据类型实现亿级数据统计》)。

key 命名规范规范

的 key命名,在遇到问题的时候能够方便定位。Redis 属于 没有 Scheme的 NoSQL数据库。

所以要靠规范来建立其 Scheme 语意,就好比根据不同的场景我们建立不同的数据库。

敲黑板

把「业务模块名」作为前缀(好比数据库 Scheme),通过「冒号」分隔,再加上「具体业务名」。

这样我们就可以通过 key 前缀来区分不同的业务数据,清晰明了。

总结起来就是:「业务名:表名:id」

比如我们要统计公众号属于技术类型的博主「我就随便说说」的粉丝数。

set 公众号:技术类:我就随便说说 100000 

哥,key 太长的话有什么问题么?

key 是字符串,底层的数据结构是 SDS,SDS 结构中会包含字符串长度、分配空间大小等元数据信息。

字符串长度增加,SDS 的元数据也会占用更多的内存空间。

所以当字符串太长的时候,我们可以采用适当缩写的形式。

不要使用 bigkey?

哥,我就中招了,导致报错获取不到连接。

因为 Redis 是单线程执行读写指令,如果出现bigkey 的读写操作就会阻塞线程,降低 Redis 的处理效率。

bigkey包含两种情况:

  • 键值对的 value很大,比如 value保存了 2MB的 String数据;
  • 键值对的 value是集合类型,元素很多,比如保存了 5 万个元素的 List 集合。

虽然 Redis 官方说明了 key和string类型 value限制均为512MB。

防止网卡流量、慢查询,string类型控制在10KB以内,hash、list、set、zset元素个数不要超过 5000。

哥,如果业务数据就是这么大咋办?比如保存的是《金瓶梅》这个大作。

我们还可以通过 gzip 数据压缩来减小数据大小:

/** 
 * 使用gzip压缩字符串 
 */ 
public static String compress(String str) { 
    if (str == null || str.length() == 0) { 
        return str; 
    } 
 
    try (ByteArrayOutputStream out = new ByteArrayOutputStream(); 
    GZIPOutputStream gzip = new GZIPOutputStream(out)) { 
        gzip.write(str.getBytes()); 
    } catch (IOException e) { 
        e.printStackTrace(); 
    } 
    return new sun.misc.BASE64Encoder().encode(out.toByteArray()); 
} 
 
/** 
 * 使用gzip解压缩 
 */ 
public static String uncompress(String compressedStr) { 
    if (compressedStr == null || compressedStr.length() == 0) { 
        return compressedStr; 
    } 
    byte[] compressed = new sun.misc.BASE64Decoder().decodeBuffer(compressedStr);; 
    String decompressed = null; 
    try (ByteArrayOutputStream out = new ByteArrayOutputStream(); 
    ByteArrayInputStream in = new ByteArrayInputStream(compressed); 
    GZIPInputStream ginzip = new GZIPInputStream(in);) { 
        byte[] buffer = new byte[1024]; 
        int offset = -1; 
        while ((offset = ginzip.read(buffer)) != -1) { 
            out.write(buffer, 0, offset); 
        } 
        decompressed = out.toString(); 
    } catch (IOException e) { 
        e.printStackTrace(); 
    } 
    return decompressed; 
} 

集合类型

如果集合类型的元素的确很多,我们可以将一个大集合拆分成多个小集合来保存。

使用高效序列化和压缩方法

为了节省内存,我们可以使用高效的序列化方法和压缩方法去减少 value的大小。

protostuff和 kryo这两种序列化方法,就要比 Java内置的序列化方法效率更高。

上述的两种序列化方式虽然省内存,但是序列化后都是二进制数据,可读性太差。

通常我们会序列化成 JSON或者 XML,为了避免数据占用空间大,我们可以使用压缩工具(snappy、 gzip)将数据压缩再存到 Redis 中。

使用整数对象共享池

Redis 内部维护了 0 到 9999 这 1 万个整数对象,并把这些整数作为一个共享池使用。

即使大量键值对保存了 0 到 9999 范围内的整数,在 Redis 实例中,其实只保存了一份整数对象,可以节省内存空间。

需要注意的是,有两种情况是不生效的:

Redis 中设置了 maxmemory,而且启用了 LRU策略(allkeys-lru 或 volatile-lru 策略),那么,整数对象共享池就无法使用了。

  • 这是因为 LRU 需要统计每个键值对的使用时间,如果不同的键值对都复用一个整数对象就无法统计了。

如果集合类型数据采用 ziplist 编码,而集合元素是整数,这个时候,也不能使用共享池。

  • 因为 ziplist 使用了紧凑型内存结构,判断整数对象的共享情况效率低。

命令使用规范

有的命令的执行会造成很大的性能问题,我们需要格外注意。

生产禁用的指令

Redis 是单线程处理请求操作,如果我们执行一些涉及大量操作、耗时长的命令,就会严重阻塞主线程,导致其它请求无法得到正常处理。

KEYS:该命令需要对 Redis 的全局哈希表进行全表扫描,严重阻塞 Redis 主线程;

  • 应该使用 SCAN 来代替,分批返回符合条件的键值对,避免主线程阻塞。

FLUSHALL:删除 Redis 实例上的所有数据,如果数据量很大,会严重阻塞 Redis 主线程;

FLUSHDB,删除当前数据库中的数据,如果数据量很大,同样会阻塞 Redis 主线程。

  • 加上 ASYNC 选项,让 FLUSHALL,FLUSHDB 异步执行。

我们也可以直接禁用,用rename-command命令在配置文件中对这些命令进行重命名,让客户端无法使用这些命令。

慎用 MONITOR 命令MONITOR 命令

会把监控到的内容持续写入输出缓冲区。

如果线上命令的操作很多,输出缓冲区很快就会溢出了,这就会对 Redis 性能造成影响,甚至引起服务崩溃。

所以,除非十分需要监测某些命令的执行(例如,Redis 性能突然变慢,我们想查看下客户端执行了哪些命令)我们才使用。

慎用全量操作命令

比如获取集合中的所有元素(HASH 类型的 hgetall、List 类型的 lrange、Set 类型的 smembers、zrange 等命令)。

这些操作会对整个底层数据结构进行全量扫描 ,导致阻塞 Redis 主线程。

  • 哥,如果业务场景就是需要获取全量数据咋办?

有两个方式可以解决:

  1. 使用 SSCAN、HSCAN等命令分批返回集合数据;
  2. 把大集合拆成小集合,比如按照时间、区域等划分。

数据保存规范

冷热数据分离

虽然 Redis 支持使用 RDB 快照和 AOF 日志持久化保存数据,但是,这两个机制都是用来提供数据可靠性保证的,并不是用来扩充数据容量的。

不要什么数据都存在 Redis,应该作为缓存保存热数据,这样既可以充分利用 Redis 的高性能特性,还可以把宝贵的内存资源用在服务热数据上。

业务数据隔离

不要将不相关的数据业务都放到一个 Redis 中。一方面避免业务相互影响,另一方面避免单实例膨胀,并能在故障时降低影响面,快速恢复。

设置过期时间

在数据保存时,我建议你根据业务使用数据的时长,设置数据的过期时间。

写入 Redis 的数据会一直占用内存,如果数据持续增多,就可能达到机器的内存上限,造成内存溢出,导致服务崩溃。

控制单实例的内存容量

建议设置在 2~6 GB 。这样一来,无论是 RDB 快照,还是主从集群进行数据同步,都能很快完成,不会阻塞正常请求的处理。

防止缓存雪崩

避免集中过期 key 导致缓存雪崩。

  • 哥,什么是缓存雪崩?

当某一个时刻出现大规模的缓存失效的情况,那么就会导致大量的请求直接打在数据库上面,导致数据库压力巨大,如果在高并发的情况下,可能瞬间就会导致数据库宕机。

运维规范

  1. 使用 Cluster 集群或者哨兵集群,做到高可用;
  2. 实例设置最大连接数,防止过多客户端连接导致实例负载过高,影响性能。
  3. 不开启 AOF 或开启 AOF 配置为每秒刷盘,避免磁盘 IO 拖慢 Redis 性能。
  4. 设置合理的 repl-backlog,降低主从全量同步的概率
  5. 设置合理的 slave client-output-buffer-limit,避免主从复制中断情况发生。
  6. 根据实际场景设置合适的内存淘汰策略。
  7. 使用连接池操作 Redis。

相关推荐

MySQL进阶五之自动读写分离mysql-proxy

自动读写分离目前,大量现网用户的业务场景中存在读多写少、业务负载无法预测等情况,在有大量读请求的应用场景下,单个实例可能无法承受读取压力,甚至会对业务产生影响。为了实现读取能力的弹性扩展,分担数据库压...

Postgres vs MySQL_vs2022连接mysql数据库

...

3分钟短文 | Laravel SQL筛选两个日期之间的记录,怎么写?

引言今天说一个细分的需求,在模型中,或者使用laravel提供的EloquentORM功能,构造查询语句时,返回位于两个指定的日期之间的条目。应该怎么写?本文通过几个例子,为大家梳理一下。学习时...

一文由浅入深带你完全掌握MySQL的锁机制原理与应用

本文将跟大家聊聊InnoDB的锁。本文比较长,包括一条SQL是如何加锁的,一些加锁规则、如何分析和解决死锁问题等内容,建议耐心读完,肯定对大家有帮助的。为什么需要加锁呢?...

验证Mysql中联合索引的最左匹配原则

后端面试中一定是必问mysql的,在以往的面试中好几个面试官都反馈我Mysql基础不行,今天来着重复习一下自己的弱点知识。在Mysql调优中索引优化又是非常重要的方法,不管公司的大小只要后端项目中用到...

MySQL索引解析(联合索引/最左前缀/覆盖索引/索引下推)

目录1.索引基础...

你会看 MySQL 的执行计划(EXPLAIN)吗?

SQL执行太慢怎么办?我们通常会使用EXPLAIN命令来查看SQL的执行计划,然后根据执行计划找出问题所在并进行优化。用法简介...

MySQL 从入门到精通(四)之索引结构

索引概述索引(index),是帮助MySQL高效获取数据的数据结构(有序),在数据之外,数据库系统还维护者满足特定查询算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构...

mysql总结——面试中最常问到的知识点

mysql作为开源数据库中的榜一大哥,一直是面试官们考察的重中之重。今天,我们来总结一下mysql的知识点,供大家复习参照,看完这些知识点,再加上一些边角细节,基本上能够应付大多mysql相关面试了(...

mysql总结——面试中最常问到的知识点(2)

首先我们回顾一下上篇内容,主要复习了索引,事务,锁,以及SQL优化的工具。本篇文章接着写后面的内容。性能优化索引优化,SQL中索引的相关优化主要有以下几个方面:最好是全匹配。如果是联合索引的话,遵循最...

MySQL基础全知全解!超详细无废话!轻松上手~

本期内容提醒:全篇2300+字,篇幅较长,可搭配饭菜一同“食”用,全篇无废话(除了这句),干货满满,可收藏供后期反复观看。注:MySQL中语法不区分大小写,本篇中...

深入剖析 MySQL 中的锁机制原理_mysql 锁详解

在互联网软件开发领域,MySQL作为一款广泛应用的关系型数据库管理系统,其锁机制在保障数据一致性和实现并发控制方面扮演着举足轻重的角色。对于互联网软件开发人员而言,深入理解MySQL的锁机制原理...

Java 与 MySQL 性能优化:MySQL分区表设计与性能优化全解析

引言在数据库管理领域,随着数据量的不断增长,如何高效地管理和操作数据成为了一个关键问题。MySQL分区表作为一种有效的数据管理技术,能够将大型表划分为多个更小、更易管理的分区,从而提升数据库的性能和可...

MySQL基础篇:DQL数据查询操作_mysql 查

一、基础查询DQL基础查询语法SELECT字段列表FROM表名列表WHERE条件列表GROUPBY分组字段列表HAVING分组后条件列表ORDERBY排序字段列表LIMIT...

MySql:索引的基本使用_mysql索引的使用和原理

一、索引基础概念1.什么是索引?索引是数据库表的特殊数据结构(通常是B+树),用于...