redis一些总结
wptr33 2025-01-05 20:31 23 浏览
缓存穿透(缓存击穿) 通过互斥锁防止db攻击
1.互斥锁解决
public String get(key) {
String value = redis.get(key);
if (value == null) { //代表缓存值过期
//设置3min的超时,防止del操作失败的时候,下次缓存过期一直不能load db
if (redis.setnx(key_mutex, 1, 3 * 60) == 1) { //代表设置成功
value = db.get(key);
redis.set(key, value, expire_secs);
redis.del(key_mutex);
} else {
//这个时候代表同时候的其他线程已经load db并回设到缓存了,这时候重试获取缓存值即可
sleep(50);
get(key); //重试
}
} else {
return value;
}
}
2.布隆过滤器把非法的key直接过滤掉,返回空
缓存雪崩
1:在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。比如对某个key只允许一个线程查询数据和写缓存,其他线程等待。
2:不同的key,设置不同的过期时间,让缓存失效的时间点尽量均匀。
3:做二级缓存,A1为原始缓存,A2为拷贝缓存,A1失效时,可以访问A2,A1缓存失效时间设置为短期,A2设置为长期.
4: 缓存定时更新不由接口控制
缓存并发问题
这里的并发指的是多个redis的client同时set key引起的并发问题。比较有效的解决方案就是把redis.set操作放在队列中使其串行化,必须的一个一个执行,具体的代码就不上了,当然加锁也是可以的,至于为什么不用redis中的事务,留给各位看官自己思考探究。
redis常见性能问题和解决方案:
Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件
如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次
为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内
尽量避免在压力很大的主库上增加从库
Redis中海量数据的正确操作方式
利用SCAN系列命令(SCAN、SSCAN、HSCAN、ZSCAN)完成数据迭代。
Redis 管道 Pipeline
在某些场景下我们在一次操作中可能需要执行多个命令,而如果我们只是一个命令一个命令去执行则会浪费很多网络消耗时间,如果将命令一次性传输到 Redis中去再执行,则会减少很多开销时间。但是需要注意的是 pipeline中的命令并不是原子性执行的,也就是说管道中的命令到达 Redis服务器的时候可能会被其他的命令穿插
(echo -en "PING\r\n SET runoobkey redis\r\nGET runoobkey\r\nINCR visitor\r\nINCR visitor\r\nINCR visitor\r\n"; sleep 10) | nc localhost 6379
go实现pipeline
package main
import (
"github.com/go-redis/redis"
"log"
"strconv"
)
func main() {
client := redis.NewClient(&redis.Options{
Addr: "localhost:6379",
Password: "", // no password set
DB: 0, // use default DB
Network: "tcp",
PoolSize: 50,
})
if _, err := client.Ping().Result(); err != nil {
panic(err)
}
pipe := client.Pipeline()
pipe.Get("key1")
pipe.Get("key2")
pipe.Get("key3")
result, err := pipe.Exec()
defer client.Close()
}
Redis Module 实现布隆过滤器
Redis module 是Redis 4.0 以后支持的新的特性,这里很多国外牛逼的大学和机构提供了很多牛逼的Module 只要编译引入到Redis 中就能轻松的实现我们某些需求的功能。在Redis 官方Module 中有一些我们常见的一些模块,我们在这里就做一个简单的使用。
- neural-redis 主要是神经网络的机器学,集成到redis 可以做一些机器训练感兴趣的可以尝试
- RedisSearch 主要支持一些富文本的的搜索
- RedisBloom 支持分布式环境下的Bloom 过滤器
Redis 到底是怎么实现“附近的人”
使用方式
GEOADD key longitude latitude member [longitude latitude member ...]
将给定的位置对象(纬度、经度、名字)添加到指定的key。其中,key为集合名称,member为该经纬度所对应的对象。在实际运用中,当所需存储的对象数量过多时,可通过设置多key(如一个省一个key)的方式对对象集合变相做sharding,避免单集合数量过多。
成功插入后的返回值:
(integer) N
其中N为成功插入的个数。
- 上一篇:Redis大key怎么解决
- 下一篇:图解 Redis 分布式锁,写得太好了
相关推荐
- MySQL进阶五之自动读写分离mysql-proxy
-
自动读写分离目前,大量现网用户的业务场景中存在读多写少、业务负载无法预测等情况,在有大量读请求的应用场景下,单个实例可能无法承受读取压力,甚至会对业务产生影响。为了实现读取能力的弹性扩展,分担数据库压...
- 3分钟短文 | Laravel SQL筛选两个日期之间的记录,怎么写?
-
引言今天说一个细分的需求,在模型中,或者使用laravel提供的EloquentORM功能,构造查询语句时,返回位于两个指定的日期之间的条目。应该怎么写?本文通过几个例子,为大家梳理一下。学习时...
- 一文由浅入深带你完全掌握MySQL的锁机制原理与应用
-
本文将跟大家聊聊InnoDB的锁。本文比较长,包括一条SQL是如何加锁的,一些加锁规则、如何分析和解决死锁问题等内容,建议耐心读完,肯定对大家有帮助的。为什么需要加锁呢?...
- 验证Mysql中联合索引的最左匹配原则
-
后端面试中一定是必问mysql的,在以往的面试中好几个面试官都反馈我Mysql基础不行,今天来着重复习一下自己的弱点知识。在Mysql调优中索引优化又是非常重要的方法,不管公司的大小只要后端项目中用到...
- MySQL索引解析(联合索引/最左前缀/覆盖索引/索引下推)
-
目录1.索引基础...
- 你会看 MySQL 的执行计划(EXPLAIN)吗?
-
SQL执行太慢怎么办?我们通常会使用EXPLAIN命令来查看SQL的执行计划,然后根据执行计划找出问题所在并进行优化。用法简介...
- MySQL 从入门到精通(四)之索引结构
-
索引概述索引(index),是帮助MySQL高效获取数据的数据结构(有序),在数据之外,数据库系统还维护者满足特定查询算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构...
- mysql总结——面试中最常问到的知识点
-
mysql作为开源数据库中的榜一大哥,一直是面试官们考察的重中之重。今天,我们来总结一下mysql的知识点,供大家复习参照,看完这些知识点,再加上一些边角细节,基本上能够应付大多mysql相关面试了(...
- mysql总结——面试中最常问到的知识点(2)
-
首先我们回顾一下上篇内容,主要复习了索引,事务,锁,以及SQL优化的工具。本篇文章接着写后面的内容。性能优化索引优化,SQL中索引的相关优化主要有以下几个方面:最好是全匹配。如果是联合索引的话,遵循最...
- MySQL基础全知全解!超详细无废话!轻松上手~
-
本期内容提醒:全篇2300+字,篇幅较长,可搭配饭菜一同“食”用,全篇无废话(除了这句),干货满满,可收藏供后期反复观看。注:MySQL中语法不区分大小写,本篇中...
- 深入剖析 MySQL 中的锁机制原理_mysql 锁详解
-
在互联网软件开发领域,MySQL作为一款广泛应用的关系型数据库管理系统,其锁机制在保障数据一致性和实现并发控制方面扮演着举足轻重的角色。对于互联网软件开发人员而言,深入理解MySQL的锁机制原理...
- Java 与 MySQL 性能优化:MySQL分区表设计与性能优化全解析
-
引言在数据库管理领域,随着数据量的不断增长,如何高效地管理和操作数据成为了一个关键问题。MySQL分区表作为一种有效的数据管理技术,能够将大型表划分为多个更小、更易管理的分区,从而提升数据库的性能和可...
- MySQL基础篇:DQL数据查询操作_mysql 查
-
一、基础查询DQL基础查询语法SELECT字段列表FROM表名列表WHERE条件列表GROUPBY分组字段列表HAVING分组后条件列表ORDERBY排序字段列表LIMIT...
- MySql:索引的基本使用_mysql索引的使用和原理
-
一、索引基础概念1.什么是索引?索引是数据库表的特殊数据结构(通常是B+树),用于...
- 一周热门
-
-
C# 13 和 .NET 9 全知道 :13 使用 ASP.NET Core 构建网站 (1)
-
程序员的开源月刊《HelloGitHub》第 71 期
-
详细介绍一下Redis的Watch机制,可以利用Watch机制来做什么?
-
假如有100W个用户抢一张票,除了负载均衡办法,怎么支持高并发?
-
Java面试必考问题:什么是乐观锁与悲观锁
-
如何将AI助手接入微信(打开ai手机助手)
-
redission YYDS spring boot redission 使用
-
SparkSQL——DataFrame的创建与使用
-
一文带你了解Redis与Memcached? redis与memcached的区别
-
如何利用Redis进行事务处理呢? 如何利用redis进行事务处理呢英文
-
- 最近发表
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)
- c语言 switch (34)
- git commit (34)