如何用java实现图片与base64转换
wptr33 2025-01-07 16:16 23 浏览
如果你是一个软件开发,不论前端后端工程师,图片的处理你是肯定要会的,关于图片的Base64编码,你可能有点陌生,但是这是一个软件工程师应该要掌握的知识点,现在很多网友把图片与base64转换都做成了小工具如:
http://www.yzcopen.com/img/imgbase64今天我们就一起来看一下吧。base64编码 是将数据用 64 个可打印的字符进行编码的方式,任何数据底层实现都是二进制,所以都可以进行 base64编码,base64编码 主要用在数据传输过程中(编码、解码)。而 Data URI 是将数据用 URI 的形式进行展现。常用的是将图片进行 base64 编码,用 Data URI 的形式进行展现,可以说,base64编码后的字符串是某些 Data URI(这里就包括图片的 base64 URL) 的一部分。(图片转 Base64码 之后是通过 Data URI scheme来实现显示的)
Base64编码是一种图片处理格式,通过特定的算法将图片编码成一长串字符串,在页面上显示的时候,可以用该字符串来代替图片的url属性。
下面我们用java实现图片转base64:代码如下:
public class mainTest {
public static void main(String[]args) throws Exception {
InputStream in = new FileInputStream(new File("您的图片路径"));
String str = ImageToBase64ByStream(in);
System.out.println(str);
}
/**
* 文件流生成base64
* @param imgFile
* @return
*/
public static String ImageToBase64ByStream(InputStream in) {
// 将图片文件转化为字节数组字符串,并对其进行Base64编码处理
byte[] data = null;
// 读取图片字节数组
try {
data = new byte[in.available()];
in.read(data);
in.close();
BASE64Encoder encoder = new BASE64Encoder();
return encoder.encode(data);// 返回Base64编码过的字节数组字符串
} catch (IOException e) {
e.printStackTrace();
}
// 对字节数组Base64编码
return null;
}
}
通过上面代码我们会得到一大段编码如:
iVBORw0KGgoAAAANSUhEUgAAApcAAAF2CAYAAAA7nLMrAAAAAXNSR0IArs4c6QAAAARnQU1BAACx
jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAD7PSURBVHhe7d0LtCVVfedxJjMrOmsmazS6dBSF
mIQgmpFEVh4+ZobECKOoEw3MuJiYCURDdCRkJfYMkYiEBDVtAjgyGl7pS/qV5iG4kAa6oZGhaeiG
HmibGJB+0H37dft17+2+79ee86979r377LOraledXedUnfM9a93Vj1u1a9dn71P1O3tX1TlF8UIA
AQQQQAABBBBAIJDAKYHKoRgEEEAAAQQQQAABBBThkk6AAAIIIIAAAgggEEyAcBmMkoIQQAABBBBA
AAEECJf0AQQQQAABBBBAAIFgAoTLYJQUhAACCCCAAAIIIEC4pA8ggAACCCCAAAIIBBMgXAajpCAE
EEAAAQQQQAABwiV9AAEEEEAAAQQQQCCYAOEyGCUFIYAAAggggAACCLQtXB44cEDxgwF9gD5AH6AP
0AfoA/SB7u4DbQuX5HgEEEAAAQQQQACB7hcgXHZ/G7OHCCCAAAIIIIBA2wQIl22jZkMIIIAAAggg
gED3CxAuu7+N2UMEEEAAAQQQQKBtAuHD5boHlXrn6Uqd/hqlTntt7Uf+5AcD+kDX9wF5z591qlI3
Xd+2AxgbQgABBBAon0DYcCnB8vSfJEwSpukDPd0Hah8qv3pN+Y521AgBBBBAoC0CYcPlmW8mVPR0
qGB0sutHJ337t3zI5IUAAggg0JMCYcOleeL52p8rdXigJ1HZaQR6UuCpJxo/XPYkAjuNAAIIIBA2
XEbXWdZ/hofQRQCBXhNYuM66NjXOCwEEEECgJwXChktz5LInOdlpBHpcgGNAj3cAdh8BBBBQqhLh
8vjx4+r5559X69evVytWrFC33HILPxjQB0rYB8xrTnmfcpyiD5S3D8i5VM6p27ZtU3KO5YVASIFS
h8uZmRm1efNmdeuttxIkShgkOHGU98TRqbYhXNInOtX32G7+vifn2C1btqjZ2dnYfHH/bqXOvad2
5dsyfnrRQNpe+oDvq7ThcufOnWrNmjVRqOzr61Nbt25V/f39amxszHffWA4BBNotwLR4u8XZHgK5
BORcKudUObfKOVbOtffcc48aGRlxlkewJFRLH/B9lTJcTk9Pq9WrV0ed/cEHH1Sjo6O++8NyCCDQ
SQHCZSf12TYCuQTkHCvn2h07dqihIffNuL04Wsc+Nwdq3w5WynC5adOmKFiuXbvWdz9YDgEEyiBA
uCxDK1AHBHIJnDx5Mrr+0jVDSNBi5FL6gO+rdOHy0KFDC1PhjFj6NiPLIVASAcJlSRqCaiCQXWBu
bk4NDg5GAVNmEM0X4ZJwWelw+cgjj0ThUkYveSGAQMUECJcVazCqi0CjgAzqSLi0r70kXBIuKx0u
77777ihcyrUfvBBAoGIChMuKNRjVRaBRYHJyMgqXw8PDjFwuI1DaHyp83y+lmxZftmxZFC7l2g9e
CCBQMQHCZcUajOoi0CggjyOScCnT4+aLkUuCZqVHLvWzynjDI4BABQUIlxVsNKqMQKOAhEv7weqE
S8Il4ZIjBQIIdEaAcNkZd7aKQEABwiVBMu7DhG83K920OCOXvk3HcgiUUIBwWcJGoUoIZBMgXBIu
CZfZ3jMsjQACRQoQLovUpWwE2iJAuCRcEi7b8lZjIwgg4CVAuPRiYiEEyixAuCRcEi7L/A6lbgj0
mgDhstdanP3tQgHCZQnD5Wal5Is571zW2br5dneuufSVYjkEEEgXIFymG7EEAiUXIFw2B7hNk/ON
5hXuXk5eVsp6ubZMpjvwCZevqYnVfnK+Gm7o2d6nlvRtd5Q0oDYsXaKWLN2gBpK2I+sv6VOuEhpX
q5e3pFam74+x7YENS9XSDWZN5stbumGD6vPavq7Nds/lZbmlqmGTUsTABrU0ZXvb+5YoJ2ltdffv
5vclbp3aWs46i8niOrJMsm2jn9U6tbJc/UC24e4fQlH7nW9b1paL276YxG2joZZRX7P3sd5Gjt9F
24vaK0Ofi5ZdbPf29zuPNzXh0gOJRRAot0Cnw6UOcj5KXmFvWS3M1QobOpgx0NXWkwCYKVjKOla4
bNif2vBjFC5rdZGRSP1aCJv1dX323Vwmc1it71umgFtbx/dV6pFLObG7Tvr6/+N+b+58FDLSQqhD
qyFoSThIKMM8yetQI/UeqIUHCZcbjKCj96el8BNTn+aw4dixeqBpco3bx4bAaoTEvg3zAd8KR3ag
TAqNunZp9Y4PkTrEN3/ESAqetkpsP4r23RHiXe+upg9CUjcjXCZ+GEl5u8Z8aGh7v/M5qhAufZRY
BoFSC3Q6XHoFHglhtZB2jWdIyhsuvYKuXQ9HuDTDnz1y6TWSychlmJHLphGd+snZHl1LGonT716f
EJptFKkeGppGnuaD5GKgahzVSwtRcaOA5lEoGkmzAt389mJGB11DjvaIbkKIagjB9bIazRf3sakt
PEZSZd/SXMygmBrK6/0kb7h0+SaNgC60dTvDZQf6nfeZkHDpTcWCCJRVoBThMiU8XlMb+ZOhP68g
WgugecJl2jpNI5r1ANjQrnqk0pgGJ1xm7fkBTiwL0+JyAm0YLYybuu5TfQlTvTq8mNOJzt2yglD8
yKUxIlUvyDWCJIFkYVrcmBadDyP5p+HtAKe37QzQZuDJOAU7nyMdU971dtmeMO3clGedU8b1kFxr
YynLOcLZVOfaVHtf/FR49AHBFS5jtq+36bTzDMYLfSltWjxh5DIu0C44Zhi5LKrfeR8KAhwDvLfF
ggggUIhAGcJlWni8sxbaskxzpwVFM6RG2669ZLRR/m5vR/8+dvs+0+K1ZcxRUT2yKfuV65UhaPsG
ctdyvnUr7bT4fGjaXp9abA50jTuYdF1gfeq0NkWZeO1cwHCZPnJp19f6dz1ULYQLY8raGS5l31zX
WsZes6r1Uq7xtMLdYnuY+o6RSyNoxV+ruVhGlpFLY636da3uq24bRi4dDmagdIVL+//S6li7YNXq
X/7T4s2j767+0HztsP2hpsh+53tAia631j/eK7EgAgiUSaAM4TItPHpNJS9bHNlMvJTRnNZ23Iyz
EEx1IWnT8S1Mi7v2W4fZuOtL04J4K2HSXte3n5Y2XM5fr2acoJuCjhEqkkLUwhRwzE0wWirTyF7j
dXiLQbjx+krXdKo5cinByz3Na13nlxYuF0ZDm+uVfDOKzw1ERtAxjVKvubRuEHKN7BmjjOk39Mg1
nkbA8rgOdmHfs4ZLx0hhecOlfAArvt/5HlAIl95SLIhAaQXKEC7TwqPktyw3sWQZubQDlQ533td4
GuFyU23kM20a3Px9Q7isT7PbI6RR8cZIJeHS462kp8Xtu4v7andeL60Pg+kT/cIJP+Wu8oabaHyG
0vS0tc+yC4HLdeOHT3gzRxGNu7JjwlP8NZdSzvx1l7rai4Eo/W7t5iBcC3J24HaGwfh9bLq0wPQ0
9i8xuFm+6ddEzrdDKyOXqdd11q95bQjELU6LN3Y1j5HLNvc7j7fu/CKMXHpTsSACZRUoQ7jMetN0
2hR55nBpVMAsW09lJwZbY10ZbfS5KaipPNf1m/UOE9Wn9nvfm5kYuazBNX63ePLIZWq4bApoMdPn
SdcEJjwqpm/j/DV+5jWDyeHH9VgkHfzc057z19AtjtLGXXO5eJBaDHtpo206RCVnaMOsHuJlvb7t
7sAaW1f7A4BPuDSv77SDqVVp1zR2w8ilox0Tr7m0jvpplm2dFjdczH2Iv/Go9X7nfRIkXHpTsSAC
ZRUoQ7jMEogkvIUKlwtB0L6GMSXt6u0vjHLWGjduGjttVLZp3+vbNvcx68htFs+kZX37bGmnxed3
YPHGl6V9fdlGLu3rFhcGCFOefRk33WrfYW0I28HDdaey83mJGUKtzlLp4XKxYukjghI6xDjpWaBm
INeB0hylLXjkUnqB+TxLPWJnh03rmtNWRi5db55M4TIhSEfjy9YjtkLc0BO9WxzP/QzV73wPKIxc
ekuxIAKlFejlcOkKVlG2i7nOUt+AEwXJ2miiPL/Sfs5l6ihszM04C0G1/vu4m3021bYbKjymlePb
aUsbLhcfReR+7E/0HEl9l3HTtPh8CIq7ji86CTufW1lbr3atp/kYpPmbWOTO5vgA5goei9uoB7K4
4cGG6/vs6xubp9qzhMvYRzBFodYOiHEPStd1qjnICKoO33HB2NhPXdfttQ8G21u+5tJ6FH5Dec1O
rqAV96ZYcMp03a1+JFS9X1h9sKFPRGa1pxosPBe0sb6pj9PyuFtc71tR/c73gEK49JZiQQRKK9Cx
cJmawhrJ9Eiezyhe5mlxY1paT23bIS42dDpuCnLeoFTfRpYpcdd0vIyEtitg+nba0obLxZFLI1xa
11wu7KR5Yq8HhLSHd8+PFiWN2DmmfWMepO4c1TLDjzNYuqbDzXBZC8/GsyvNkUv3cy7tJndcAqDD
k3M/9CixbaL/X9rBNNHLxY1cLo46R3VPuOmqKYgljULWd3PhusjavmzQz/40nH2vm9SWaf0lbeQy
bntRuSk3H6W+WTOEy2hb+hKAgP0utY56AabFvalYEIGyCnQsXMroX46f0OHS+Y08RmDUI4ix1106
wqX+ph9znayBN/N0eg7LNH/fPluxcLn4rTALgcW8uSJuKjxGYz4QzIfX5qlJR/BsuoliMWw13fnd
NG27+PDz6FpN48abhkDgCrzRdhfraRbdHMyMh6zrEJkYKm0ce+pb32VvfRtOwijf4jMyE77dxhrJ
bOQyg+v8/ti+rjA4357z6+YauUx416SFy6j/NIX2+iUHecKl5dO4v+3vd74HFEYuvaVYEIHSClQq
XNaDXNrIXdYg5wpZC9PSac+UjAmXOmAO1UYao1dKOdH2jGXMcGnfMZ4WCkP93rfTljxc+u4Gy3WN
gIRWn7v0u2aHu2xHGLnssgZld3pRoMzh0nXntX2jS942cwVU14POU4OaK1zGfHtPlhBrj9D63DyU
WteMo5u+toRLXymWQwCBdAHCZboRSyBQcoEyh8vQYSnuzmzdRGkjovb6C5eN1kcczctIm+4et64x
3fRKNFDZMFrZcBNPzE1FOmRmrWseS9+uS7j0lWI5BBBIFyBcphuxBAIlF+jpcJlxJC9PQKvyOr5d
l3DpK8VyCCCQLkC4TDdiCQRKLkC4zHdjUZVDo2/dfbsu4dJXiuUQQCBdgHCZbsQSCJRcgHBJuIwL
m75dl3DpK8VyCCCQLkC4TDdiCQRKLkC4JFwSLkv+JqV6CPSUAOGyp5qbne1OAcIl4bLrwuXy5cuj
7xcfGxvrzncte4VANwsQLru5ddm3HhCYm5tTEi4HBwcb9tb3mjyW6+5g6vsWKN20+Nq1a6Nw2d/f
77sPLIcAAmURIFyWpSWoBwK5BKampqJweeLECcLlsu4Oink+CPh2qtKFy82bN0fh8vnnn/fdB5ZD
AIGyCBAuy9IS1AOBXALj4+NRuLRnD/MEEdbpvnDq26lKFy6HhobUbbfdplatWqUmJ/V3JPnuDssh
gEBHBQiXHeVn4wi0IiBT4nIOlnA5OzvLyCUjl03f9e7bv0oXLqXizz77bDR6uW7dOt/9YDkEECiD
AOGyDK1AHRDIJXDy5MkoWMropf1iFLL7RiHztKlvxypluJyZmVFr1qxRGzduVNLZ5dMULwQQqIAA
4bICjUQVEWgUkHOsDpbDw8NOnjxBhHW6L5D6vnfCh8vTX1PTrP20+JI71fTjEOTv8klqenqaoNmi
K6sjUKiAvPcDHQMKrSeFI9DjAhIo5Zwq51bzfCs39LheBMXuC4p52tT3bRM+XOqRi/49vnVIXE4u
KtYhkz+PY1GbsqEflNNg8NCh+Q+W9R/aqZztRLvQLq4+kPb4vzxBhHW6L5D6Bruw4fJtrzNOLq9t
ONGYJx3+vngCxgKL7ukDje95Qgwhhj5Q3j4go5UyFS4jl3IpWtrr3Hu6LygRfrO1qfQB31fYcHnl
FQRK85oz/k5/6NU+cOEFvscglkMAgQoI3L9bKQJmtjDWTeFV2l76gO8rbLiUrX7+04xe9mqgYL8J
06fVRi8/fr7v8YflEEAAAQS6UCB8uOxCJHYJAQQQQAABBBBAwE+AcOnnxFIIIIAAAggggAACHgKE
Sw8kFkEAAQQQQAABBBDwEyBc+jmxFAIIIIAAAggggICHAOHSA4lFEEAAAQQQQAABBPwECJd+TiyF
AAIIIIAAAggg4CFAuPRAYhEEEEAAAQQQQAABPwHCpZ8TSyGAAAIIIIAAAgh4CBAuPZBYBAEEEEAA
AQQQQMBPoHThUr7ndGBgQB04cICfNhmI9/DwsF+PYSkEEEAAAQQQQCBBoHThUoLOzMwMjdZGgcnJ
ySjQ80IAAQQQQAABBFoVKF24lBFLXu0XwL395mwRAQQQQACBbhQgXHZjq+bYJ8JlDjRWQQABBBBA
AIEmAcIlnSISIFzSERBAAAEEEEAghADhMoRiF5RBuOyCRmQXEEAAAQQQKIEA4bIEjVCGKhAuy9AK
1AEBBBBAAIHqCxAuq9+GQfaAcBmEkUIQQAABBBDoeQHCZc93gXkAwiUdAQEEEEAAAQRCCBAuQyh2
QRmEyy5oRHYBAQQQQACBEggQLkvQCGWoAuGyDK1AHRBAAAEEEKi+AOGy+m0YZA8Il0EYKQQBBBBA
AIGeFyBc9nwXmAcgXNIREEAAAQQQQCCEAOEyhGIXlEG47IJGZBcQQAABBBAogUBXh8trr71WnXLK
KZl+ZJ2418aNG6Oy5M+419GjR9Vll12m5E/9kuXPP/98df3116sVK1Z4N7ssm2V574IdC4YOly4H
2Zck3yRT8Utyd60rdZD1fAx9+oq069jYWCvMXbfuiy++qJYsWdLgIt5iJf+fpc2kDbIsX1bMPMcA
MdP7LuuLhfQ1+TOt/+bZXpxdO485ZW2/LPWy+6w+5tx8881N74ukcl3voyz1KMuyrr7o04el/trO
9xxBvy9Lq7vr0dXhMo7e5ySmg6RvONVvCLPD6zeLBJz+/v4oXMqP/FvKlT9lGb2c77b0eiG7VhHh
Ug6wuq5y8Dz77LMTg35SsNAB3Qzt5v77hEPb1wyLaX1Ctl/VcCmBQe+7vQ8SYOT/9O/tvmW3m+v3
OlzqZaW8vXv3RidX6QO63fW2ffqC2VZVc897DPjkJz+pnnvuuag9pL9JOfJ/4pX0yrs9fRzyOe4U
ccwJefzSZYnVeeedF2umP/iE+pBoHjf0MUjabt26dVH/lx/tq49vWY9VVfrAJX1R3vOyz/qc6BMu
fc6Bduik3xfxDgpXZs+FS9enHRenvKHNwGgf5OM+oZkHagmS5iimOSrgU492jiKEDpfaVAzlYKNP
mC5rHXDEPGvwkOBin3xdI8zyf65lzXqmhduqhRzZN+lDZjCQ9jAP0vaB3zz56nYxR870+nYolX5v
j9aYJ16fkZm0gB/usFdcSXZwyHIM0P1We6eFEH2Mquoxp4hWSAuXobZpDz7YI/V2f0/r2z7vj1B1
L6oc8wO4Dou6jyaNvpvHfNeopevY3cr7zLX/7TzXFuVftnK7PlxmCStmuNBvFN9P9/rN4/o0pUcp
5USjg5Y5cpl1lDRtaj5PJwsdLs03q57yM0OkWUc7XNrTrHH7I+vJsjpcpp2MzZOwfRDzWbdq4dIV
Ds0R4LQTsfxePlTZl3iYDuZJ0Xyv6ZPtfffdtzBSr9czR1J9Rs2SPhTk6etFr5PnGCB1kj6o9zUp
bNjvozzbK8Mxp4h20H3aHDE03+vmhyfdv+W4HDeybx4X9KyTeZ5wjVyaH7T0KJ4+ZvuM0NnvCd9p
4iI8s5QpnnoWxP5AGvfB3R6dl/X0eyBtmpx+n6V12r9sT4TLtLDiCj15Ri6l+ewO7zNyaU+52v+W
g4s+MccFtFa7TuhwKdN7EsztUTL7wCkHEnMqsJX9SBsd0GWbbdvtI5e2pzlymTZF6LoUwQ6kdrg0
32txI5f2tbfmv3X/Tpo1aKWPtGPdPMcAPYKsLeI+7EibpIXLqhxzimgL89IMcbL7kx0u5fhj9jXz
Gm3XqL/9wd4OlzpExY1c2mHK/rc9Spf3OvUibH3LtI8RvsdlXb75ITVpNinP+6wM51pfx6ovR7is
taBPuHSNYLquQ9IdXkZszOsrXSM0en3d4eW6TNd2zIBWlXCpg7a+nMAcybSnYs19yvrJ3p7y1Qcj
88RgTze6wmXV38hp9dejhaaXPnHFXZNpH4jtNpV/65OojNCY11e6+rs5cil9IG5WwRz18L3uMG3/
2/n7PMcA84OP7SS/M98j9oh9nu2V4ZhTRJu4RuPND0l2uLSvz7Qv+zDDje6v9silHOtlPXO01NX/
ZT2zP7s+QNjnlCqGS7Nd085XLgP7Wvi4kVz6fRHvoHBl9kS4TLuRxL7gWnjzBhD9ZnFNZWS5rsN1
7VvSp7hWu0TokUuzPmmXJkgAlZ+k/fOxE3MdcFzX+OgQZY7eucKsOTVp952qTdHa/cI8+WoP08rs
d2nh0rzu0uWdZcTCbhOfG1la7fNFrZ/3GKD7og4YrhFdPXLpuhykasecIvxdl3LYfd68sSwuXLo+
1JjXEepzhHl5k33MS5sxM0fqzHpUMVBmvdTFvOHH1Q98zr9532f29tp9ri2i35exzJ4Il2lvcten
q7TpKdfdtdLZ5VOsnpZKC1VJAcj+nX3iCd2ZigiXrgO91Dtp5DJuv3zDpQ6oSZ+I7UsezGlEc1TI
rn8VR9FsT/M6TNdJzDwRJ02Lb9u2LRqpkf6u319p1/G5PjzodrJ/Z09vhu7vRZWX9xig39/m8cMn
XObdnrn/rg8Z8vuijzlFtEG7wqU+hugPUK4b3NKeeJDUx+PeF0WYFVmmzzEzSzDV50X6fZGtFqZs
wmXN0RUuzQAUN4LjeoaifRe4683lmrpJOzilHaha7Q5FhEvz5GgGOm2r91k/tkPfmJPnYKNDqxku
7SktMwSZ11l1a7i0R1rEyAyXrn5t9s24E7V5k499bZlrHVdIzXL5g2tErtX+XuT6eY4BOqSY67re
B/bUqg6BZh+uyjGniDboxLS4PU1uDgy4bqqT/fY9xlV5psQ8p2XdD5+RyzzvM/MY6HMzYdVu4izi
PZW3TMKlI1ymHZzlwBD3ZrE7vDkCIG+YpHXtUT3z5G9OG+Zt7KT1QodLO7AnjWrJaE3aNKg5cinG
Ur79MqdhGbmc17FHJ83wFzdib988Zp4s7X5oh0vZpnmCl+XjnpFob1/XNe6EXES/L6LMVo4Bdrh0
BWvXSdUMl1U55hRhr0cDzQ+P9k06PtPi+r1jX9OddEOP3h/9HtF1cc1QybLm8d0857g+jBVhVWSZ
djv4zESYx3gdLu0bssw6t/I+6+S5tkj3MpXdE+Ey6zWXcSM6ZjlxoymuDu/zCc41NaXrIWXKj16m
iE9TocOlawQhruPHTZ+by5sHnrjrKu1wGXcNpxm4euGaSzNo20HPHjG3+5b9oSDpIeq6vUzTuGDp
mvYzw6WUkXRNVZkOonZd8h4DdDC3H/9kl++6XMMOl1U45hTRhtrGfLyQeaw2r69zHaPsD0/me0fK
tD8Em8ccvT/mqKQrWLqClhku5QsI9DJZR/yKMM1Spj5exNXbdZ7TxwuxlH13fSiOW49+n6V12rts
T4TLrNdc6gOGeWBJO+nqqV75ZCvLmnd+m28018n86quvbnrUkB6ydx2cihjFDB0uzYO4q0vbocW8
lsZnusL1zErXgV5v23bXwdMOAt1+zWXIw4sZ/szri81AaYd33dftkSXXTXVS16qNYpofALMcA5Yt
W7bwrEX7Pe/6AKSXybu9MhxzQvbFdpRlBkA7/JnnCrP9zKAp54FVq1Y1zHqZv3cNGlRlFFMfz30G
Psz3tBnw447R9jFczwBW9Vzbjr5ahm10fbgsA3IV6hA6XFZhn6kjAggg4BJwfahJ+8CMJAIILAoQ
LukNkQDhko6AAAIILArYT/vwGZXDDwEE5gUIl/QEwiV9AAEEEEAAAQSCCRAug1FWuyBGLqvdftQe
AQQQQACBsggQLsvSEh2uB+Gyww3A5hFAAAEEEOgSAcJllzRkq7tBuGxVkPURQAABBBBAQAQIl/SD
SIBwSUdAAAEEEEAAgRAChMsQil1QBuGyCxqRXUAAAQQQQKAEAoTLEjRCGapAuCxDK1AHBBBAAAEE
qi9AuKx+GwbZA8JlEEYKQQABBBBAoOcFCJc93wXmAQiXdAQEEEAAAQQQCCFAuAyh2AVlEC67oBHZ
BQQQQAABBEogQLgsQSOUoQqEyzK0AnVAAAEEEECg+gKEy+q3YZA9IFwGYaQQBBBAAAEEel6gdOFy
aGio5xulEwDDw8PRdZf8YEAfoA/QB+gD9AH6QCt9oHTh8pZbblH8YEAfoA/QB+gD9AH6AH2gmn2A
cEmYJczTB+gD9AH6AH2APkAfCNYHShsuOzE1zDYRQAABBBBAAAEEWhMgXLbmx9oIIIAAAggggAAC
hgDhku6AAAIIIIAAAgggEEyAcBmMkoIQQAABBBBAAAEECJf0AQQQQAABBBBAAIFgAoTLYJQUhAAC
CCCAAAIIIEC4pA8ggAACCCCAAAIIBBMgXAajpCAEEEAAAQQQQAABwiV9AAEEEEAAAQQQQCCYAOEy
GCUFIdB5gcHBwegbFsbHxztfGWqAAAIIINCTAoTLDjT7zMyMki+E37Bhg1q/fr0aHR3tQC16a5Ou
0PXAAw8o+XG9JKBddNFF0Y/8Xb+KDm9S/hVXXKGee+45ZW9L6ir/L6/du3er5cuXR3/X6+j6uv40
96G3Wp69RQABBBBot0DXh0vzJCyjOXKSlZNx0ss8wYdukLGxMfX444+rm2++Ofp56aWXQm8iSHlX
3qfUBd9SatdRpS6tZRj5kb/L/8nvqvayg5orkJlBU4Kb9B2z/+gg146RQdmG1Mfcvg6X0o9vvPHG
6He6Tl/5yldi+7UEUsJl1Xos9UUAAQSqK0C4rLWdOUqVNPpjj2JlbXYJlvfff79auXKluvfee9Wq
VavUiRMnshaTury5PzIKlham7QK371fqP94wHyJPTiyGS/n7QK26vgFTQpCEHm0qf9fTtRKMLr30
0uh3vnWU/UgKUXEwEsp0HfS27rnnngUXV7l2uDTLMPtIO0KbDpX2n3p/GblMfUuwAAIIIIBAGwV6
OlxKMNDTjEWbz87OqkcffVQtW7YsCjVPPfVUFDBDXxtnj1JJIMkagG7ZOB8uJWTa4TKLkz3trEfj
dOjU9vKnGTzjtpE3XNojjrI9s911kDS326lp8SQLc1rcrGuaCyOXWXotyyKAAAIItCrQleHSHmXS
4UpPi7/yyivRaJk5DWqOpLlGL2WUTU9D5kHfv3+/uvXWW9XLL78crb5u3Tp13333qYmJ2nBggS+p
81VXXeU9eqlHJmUa/PI7lTrna/E/EkKzvOKCU1o4Mkfo8oxcmuHy0KFDUdvHjVDr0NnJaXHdZlJX
c+TXrrPu14xcZumFLIsAAgggULRAV4ZLE82+5lJO1q6gaF9bZ5ZhX+PmahQ50SeNEMqopYxUzs3N
Ras/8cQTavXq1WpkZKTQNvYdFdSVkKlwCZQSLmXU0hy5lLCp/z9PpeNGUX3r6BtCXXXTAUza/8UX
X1y4GUa2rT9kmCPZZriU6xvjAmmrHzqSHJP6nX1DD9dc5umRrIMAAgggUIRAz4XLuBt6Wh25TAuX
EiS3bNmy0IZyI4+MZB48eLCIdo3KlEAlo5a+I646SJrh0rzGUoJn3nDpGkE1R9x8Lk/IGy71SLae
ejeDWVy4jJsWl+V9rxHN27BSPwm0en/jRlkZucwrzHoIIIAAAkUKEC7ruvbIpRk6fEYu0xrpjjvu
WJgSl2Xl5p4777wzehTR9PR02uqxv48LQfZ1jb4bWPXM/HS4DpGPvDg/kilT4HnDZVrI9a1r3nCp
g7ZYyailvpEo7vIHCf76bmy7X8iI5mOPPRaVU9RLXyPpO3JZVD0oFwEEEEAAgTwCXR0u5SRt3uFt
P4rIFSj1aJAZLvPA2uvY4VJ+/8Mf/jCaSn/hhRcWpstDbEuHtbhnOKZtwwyR8nd9c0+ecOn7WCd9
s09S3UKES/MGKh165c5x82Vuxx7l1NPPPo+0SnOO+72enrfvto+75lIvr6fy9Uitbv8QH47y7gvr
IYAAAgj0nkBXhksdaOSkm/ScS/N3sqxMd8r/yclYh0uzrKTukXVaXJe1cePG6HmXsj0ZzXS9Jicn
vXumb5hLKlCHyKd2zwdLPYqp/1+myuX/ZFQz6SWW2tQOb+Z0vW/4CRkuxVtfL2lf82n2C/13c3nZ
l6w3Svk2oGnhM3Jp3gnuuuvdnGI3n43pWx+WQwABBBBAIKtAV4ZL88aMpHCpA6Rr1MweudSjoHHX
BqaFS/k2nu985ztNI5Ryg49ci3n77beru+++W23btk319/dH12LK3cIyuimPLfJ9uZ7HmPUaQX1T
j0yH61FL2b4Ol/ph6ml3i7ueH2pe92hOT7fjmkvdzq7nleprbvVTBOTfuv5f/OIXY28Cy3Invk8b
mqHVDpf2SKY9Mh33LE4fW5+6sQwCCCCAAAI+Al0ZLs0dt6e+zROw605fHSJD3wUsX/d42223xV6r
t2fPHvXwww+rFStWqL6+vugB6zKVLqOaTz/9tE9bBltGh8gbHp2/1lK/9PWXdugMtuGUgvKOXCY9
eijtofk+v5fHTIV6VamuofaZchBAAAEEukug68NlWZpLRijlax9lhFKCZtxLApT8fuvWrVGwvOuu
u4I/aL0sJlnrkTdcZt0OyyOAAAIIIIBAfgHCZX67zGvKtZMPPvhg9C0927dvj72JZ+/evdEUuoxe
DgwMZN4OKyCAAAIIIIAAAp0SIFy2WV6+kWfTpk3RCOaaNWuih6lL0JSfJ598UsmdyzJ9/t3vflcd
OXKkzbVjcwgggAACCCCAQGsChMvW/HKtLd8zLiOSEiwlYMpIpvysXLkyGtncuXOnmpqaylU2KyGA
AAIIIIAAAp0UIFx2Up9tI4AAAggggAACXSZAuOyyBmV3EEAAAQQQQACBTgoQLjupz7YRQAABBBBA
AIEuEyBcdlmDsjsIIIAAAggggEAnBQiXndRn2wgggAACCCCAQJcJEC67rEHZHQQQQAABBBBAoJMC
pQ2X8oxHfjCgD9AH6AP0AfoAfYA+UK0+UNpw2cnEzbYRQAABBBBAAAEE8gkQLvO5sRYCCCCAAAII
IICAQ4BwSbdAAAEEEEAAAQQQCCZAuAxGSUEIIIAAAggggAAChEv6AAIIIIAAAggggEAwAcJlMEoK
QgABBBBAAAEEECBc0gcQQAABBBBAAAEEggkQLoNRUhACCCCAAAIIIIAA4ZI+gAACCCCAAAIIIBBM
gHAZjJKCEEAAAQQQQAABBAiX9AEEEEAAAQQQQACBYAKEy2CUFIQAAggggAACCCBAuKQPIIAAAggg
gAACCAQTIFwGo6QgBBBAAAEEEEAAAcIlfQABBBBAAAEEEEAgmADhMhglBSGAAAIIIIAAAggQLukD
CCCAAAIIIIAAAsEECJfBKCkIAQQQQAABBBBAgHBJH0AAAQQQQAABBBAIJkC4DEZJQQgggAACCCCA
AAKES/oAAggggAACCCCAQDABwmUwSgpCAAEEEEAAAQQQIFzSBxBAAAEEEEAAAQSCCRAug1FSEAII
IIAAAggggADhkj6AAAIIIIAAAgggEEyAcBmMkoIQQAABBBBAAAEECJf0AQQQQAABBBBAAIFgAoTL
YJQUhAACCCCAAAIIIEC4pA8ggAACCCCAAAIIBBMgXAajpCAEEEAAAQQQQAABwiV9AAEEEEAAAQQQ
QCCYAOEyGCUFIYAAAggggAACCBAu6QMIIIAAAggggAACwQQIl8EoKQgBBBBAAAEEEECAcEkfQAAB
BBBAAAEEEAgmQLgMRklBCCCAAAIIIIAAAoRL+gACCCCAAAIIIIBAMAHCZTBKCkIAAQQQQAABBBAg
XNIHEEAAAQQQQAABBIIJEC6DUVIQAggggAACCCCAAOGSPoAAAggggAACCCAQTIBwGYySghBAAAEE
EEAAAQQIl/QBBBBAAAEEEEAAgWAChMtglBSEAAIIIIAAAgggQLikDyCAAAIIIIAAAggEEyBcBqOk
IAQQQAABBBBAAAHCJX0AAQQQQAABBBBAIJgA4TIYJQUhgAACCCCAAAIIEC7pAwgggAACCCCAAALB
BAiXwSgpCAEEEEAAAQQQQIBwSR9AAAEEEEAAAQQQCCZAuAxGSUEIIIAAAggggAAChEv6AAIIIIAA
AggggEAwAcJlMEoKQgABBBBAAAEEECBc0gcQQAABBBBAAAEEggkQLoNRUhACCCCAAAIIIIAA4ZI+
gAACCCCAAAIIIBBMgHAZjJKCEEAAAQQQQAABBAiX9AEEEEAAAQQQQACBYAKEy2CUFIQAAggggAAC
CCBAuKQPIIAAAggggAACCAQTIFwGo6QgBBBAAAEEEEAAAcIlfQABBBBAAAEEEEAgmADhMhglBSGA
AAIIIIAAAggQLukDCCCAAAIIIIAAAsEECJfBKCkIAQQQQAABBBBAgHBJH0AAAQQQQAABBBAIJkC4
DEZJQQgggAACCCCAAAKES/oAAggggAACCCCAQDABwmUwSgpCAAEEEEAAAQQQIFzSBxBAAAEEEEAA
AQSCCRAug1FSEAIIIIAAAggggADhkj6AAAIIIIAAAgggEEyAcBmMkoIQQAABBBBAAAEECJf0AQQQ
QAABBBBAAIFgAoTLYJQUhAACCCCAAAIIIEC4pA8ggAACCCCAAAIIBBMgXAajpCAEEEAAAQQQQAAB
wiV9AAEEEEAAAQQQQCCYAOEyGCUFIYAAAggggAACCBAu6QMIIIAAAggggAACwQQIl8EoKQgBBBBA
AAEEEECAcEkfQAABBBBAAAEEEAgmQLgMRklBCCCAAAIIIIAAAoRL+gACCCCAAAIIIIBAMAHCZTBK
CkIAAQQQQAABBBAgXNIHEEAAAQQQQAABBIIJEC6DUVIQAggggAACCCCAAOGSPoAAAggggAACCCAQ
TIBwGYySghBAAAEEEEAAAQQIl/QBBBBAAAEEEEAAgWAChMtglBSEAAIIIIAAAgggQLikDyCAAAII
IIAAAggEEyBcBqOkIAQQQAABBBBAAAHCJX0AAQQQQAABBBBAIJgA4TIYJQUhgAACCCCAAAIIEC7p
AwgggAACCCCAAALBBAiXwSgpCAEEEEAAAQQQQIBwSR9AAAEEEEAAAQQQCCZAuAxGSUEIIIAAAggg
gAAChEv6AAIIIIAAAggggEAwAcJlMEoKQgABBBBAAAEEECBc0gcQQAABBBBAAAEEggkQLoNRUhAC
CCCAAAIIIIAA4ZI+gAACCCCAAAIIIBBMgHAZjJKCEEAAAQQQQAABBAiX9AEEEEAAAQQQQACBYAKE
y2CUFIQAAggggAACCCBAuKQPIIAAAggggAACCMQK7OufVquXD6ubbjiu1qwaVgOHphO1CJd0JgQQ
QAABBBBAAIEmgdHRWXXVksPqjFN3qJ950+LPmaftUNd9+YianJxzqhEu6UwIIIAAAggggAACDQIn
T8yqT3y4vyFUmgFT/v47/2W/mpxoDpiESzoTAggggAACCCCAQIPA5z9zMDFY6qD5Z//zcJMc4ZLO
hAACCCCAAAIIILAg8Oi6Ea9gqQPms5vHGvQIl3QmBBBAAAEEEEAAgQWBj38oeTrcnh6/5OL9hEv6
DwIIIIAAAggggECzwI9enMw0ailBU274OXRw8Q5yRi7pWQgggAACCCCAAAKRwK3fGswcLiVg3rV6
eEGQcElnQgABBBBAAAEEEIgELv/9Q7nC5dVXLt7YQ7ikMyGAAAIIIIAAAghEAlmvt9TXX15y8QFG
LulDCCCAAAIIIIAAAo0CH3jvnlwjlxd+pJ9wSWdCAAEEEEAAAQQQaBT44PvzhcuLPkq4pC8hgAAC
CCCAAAIIWAIXfmRfrpHLz/wO0+J0JgQQQAABBBBAAAFL4E8+n++Gnr/40hGmxelNCCCAAAIIIIAA
Ao0Cf3/7UK6Ry/vvO0m4pDMhgAACCCCAAAIINAr0753KHC7fftoONTg4Q7ikMyGAAAIIIIAAAt0u
MDMzp/5hxbD67Yv2q189e7d637t3q0v/2wF1790n1PT0nHP3//sn92cKmFd89lBDOTznstt7FfuH
AAIIIIAAAj0pcOTwjPqthBt0PvrBvWrny5NNNv/v2XH1s2/e4RUwz3zrDvWjlxrLIFz2ZHdjpxFA
AAEEEECgmwUmxueUhEf9kPO4P885a5d64QcTTRRyg07auvL7b15/vGldwmU39yz2DQEEEEAAAQR6
UmDpdUe9wqEExPf8wm51eGC6wUmmzP/Hpw8mlnHlHw+o2dnmqXXCZU92OXYaAQQQQAABBLpVQILi
O35qp3e4lID5B5cebOKQ6zVv+/agevfbdzWU9cv/brda0Tek5tyXbCrCZbf2LPYLAQQQQAABBHpS
4P/ceDxTsNTT31u3jDu9Jibm1FMbx5Q8bmjL02NqaiomVdbXJlz2ZLdjpxFAAAEEEECgWwU+/Ovp
11q6rqf849oD1EO8CJchFCkDAQQQQAABBBAogYBMifvciONaRh5VFOJFuAyhSBkIIIAAAggggEAJ
BDasH8kdLiVwyhR4qy/CZauCrI8AAggggAACCJRE4Pa/HWwpXNp3jefZLcJlHjXWQQABBBBAAAEE
Sijw9QyPIHJNje/f1/hIojy7SLjMo8Y6CCCAAAIIIIBACQW+8dfHWhq5PHI4W7jc1z+lHrz/pLrj
tqHo8UTrHxrhUUQl7BdUCQEEEEAAAQQQyCVwz5oTucPlz71lh5qJ+b5xszLy/EvZzsfOc9+Vzshl
rqZjJQQQQAABBBBAoHwCL9e+5zvv3eIfeN+e1B166Z8m1Ud+I/lRR4TLVEYWQAABBBBAAAEEqiEg
35rza7+6J1fAlK9zTHo9vHZEvfNt6d/8Q7isRl+hlggggAACCCBQExi69ppgP8N/vVSNrFyuJp7Z
ouYmJ0rtO/79xxL326z8zTfl+4aeJx4fjTV44vuj6sy37vAKrYTLUnclKocAAggggAACpsCeH/9n
qoifvT/xajVwwX9SI6tXqrmpydKhS6hO2m+zwiMnZ5U8ED3L9PgnPtxf+65w9zMuDx2cbvp+8aSy
CZel6z5UCAEEEEAAAQTiBIoIlnaZ+886Q42vX1eqRsgSLqXij28YVWec6jfS+K4zdqkfvRgfqC/7
3YOZgirhslRdh8oggAACCCCAQJJAO8JltI1X/Zg68c1vlKYxsoZLqbjc0X3mackBU0Y4t24Zi93P
7913MlOwlBFNwmVpug0VQQABBBBAAIE0gbaFy/r0++jdd6ZVqS2/zxMupWIv/GBCXXLx/qZRzPef
84r6m68eVYPHZ2Lr3793KtN0uJ4qJ1y2pUuwEQQQQAABBBAIIdDucNn/5jeo2aGhEFVvqYy84VJv
dGhwRj27ZVxt3jSmJDTGXF65UMfRkdnY51imXctJuGypqVkZAQQQQAABBNop0O5wKdsrw/R4q+Ey
SxtN1x6k/nu/fSDzdDgjl1mUWRYBBBBAAAEESiGQFC4P/ca5mR5TNHjNl9TR3/2U6j/1DYl3Yh86
/wOl2Pd2VEK+fecLfziQO1hyzWU7WoltIIAAAggggEAwgaRwKaN7eV6zJ0+ogY9dEBsw+9/0+jzF
Vm4d+erHtGAp311uv+zvM2davHJNT4URQAABBBDoXYEiwqVoTjz7TOLo5dz0dAN62kPNUx/2/tXr
ag9wX6Gmd+8qRWOOj8+qP7gk/ZFDhMtSNBeVQAABBBBAAIFQAkWFSwl5SWXPTU017ELaNZBZrg2V
6fyJp59KJErbXiu+crPPRR/b5zUVTrhsRZp1EUAAAQQQQKB0AkWFy4ktm+Onxd/w2iaHtLCXJVxG
y776n6vhv/pqrHfa9vI2lHz7zod+ba9XsJTrKQmXeaVZDwEEEEAAAQRKKVBUuBy86srYcHno3PcX
Hy7rz9Ucqk2Xu15FhMutz4yr9/5itq+JJFyW8m1BpRBAAAEEEEAgr0AR4XJk5XK151/9eGy4HPzz
L7ctXMo3A42teyjz9rJ6rrxjKPXbe1zPsyRcZpVmeQQQQAABBBAotUBLjyK67i/U8Ne/tvAz+OUv
qYPv/eXEay33/Mt/oaZ37cwc9jJPi9dHLmW9fWe8Tc1NjDdsM9TIpTw8/etfORo7Df5zb9mhvnD5
IfX0k2NqcqK2sMdL3y1+8Sf2RdPm3C3ugcYiCCCAAAIIIFAOgVZCW551j33usqA7Pjc6qk7esUzt
O+1NiaH2xM3fLiRcLr0uPlie9x/2qB++MJF5f3W41KOahMvMhKyAAAIIIIAAAp0SyBMQ864jo5qz
IyOF7Or0K7tV/799XWzAPPCLPx88XK68Yzh2xPJj5/Wr4aH47xlPQiBcFtJFKBQBBBBAAAEE2iGQ
NyhmXe/Ipy5Ws8PDhe7S8T+6PHH00tx4q9PiMiL59tN2OsPlu8/apQ4eaHyOZ5YdJ1xm0WJZBBBA
AAEEECiVQNaQmGv52k01hy/8zcIfcJ4lMGZZ1m6w2dk59fEP9ceOWq5YNtTUxvI1kA89cDK6htL8
kWsx7RfhslRvESqDAAIIIIAAAlkEcoVF42aZLOvvff2/UWMPrc1SvUzLZgmMWZa1K/Hg907GBstz
3rFLTU423rgjD1WPC6NJd4tzzWWm5mdhBBBAAAEEECiDQJZwGGTZ2iOKxh9ZH7vrMwf2q+N/8kdq
3+mnJt91niPgmhttJVzKXdyuxwrJ/8l3iduvv/nasdjlCZdleBdQBwQQQAABBBAIJtDSo4iuvUbZ
3/l95L9emPiMS9le/1veqGaPHWvah7G1D6j+N/5k8FCp9zFEuDx6dEadceqO2LB449eb90tu7okL
o4TLYF2ZghBAAAEEEECgDAJFPERdvlf84K+ckxgSB6++qmH3ZTRzz79+VWHBUvYzRLh87JHRxK92
/Nubjjc167t+1n3jT9rXPzItXoZ3CHVAAAEEEEAAgUwCRYRLqcDMwIDqf0P8KOS+nz5NKXkCee01
OzgYjWYGmXZPmC4PES7vuH0oMVy6RiJ/6Z27GLnM1CtZGAEEEEAAAQQqK1BUuBQQefxQUvkywikv
+TrIooNlqJHLb33jeGK4XOK45vIPLztIuKzsO4SKI4AAAggggEAmgSLD5dFPX5IYGic2PanmZmfV
vp96S/zDz2vT61P/+ILXPmW5SSfLsubGl90ymBguf/09e5rq+o/bJ9RZp7unxrnm0qtpWQgBBBBA
AAEEqiJQZLg88O53JYbL8f/7fTX5wvbYZeTRRTOHDnlTZgmMWZY1K7D+oZHEcCnXUW7f1vyVjxsf
H1UXfGBv081AhEvv5mVBBBBAAAEEEKiCQFHhcvSuO1Onuie3Pa9Gv3tv7HKHP/7RTIRZAmOWZc1K
7O+fTg2Xn/u9g5nqbS+sH6L+hcvngzXfLd4SJysjgAACCCCAQDsFQofL6b171NBfXqv2/sSrk8Nl
7XmXc+PjauQfVsdPiZ/9zoWbfnxMsgTGLMva2/7A+/akBsxVf5//qy51uHzH23aq3bumCJc+jc8y
CCCAAAIIIFAOgXbcSOPaxsAF50cA449tSAyhxz7/2ehucp9XlsCYZVl720kPRdfPs5RnYX7z+mNq
eqrx23p89kOHSylLruFk5NJHjWUQQAABBBBAoBQCnQqXY2u/F+3/3NiY2vv616ROoYeopwneSrjc
3z+lznxr/IPUzQemSzj8u9pNQK/snvJubzNcSlmES286FkQAAQQQQACBTguECG1Zyzj8W/+5YbcH
//R/VSpcSuW//KeHU6fG476VJ+v/Ey47/S5h+wgggAACCCDgLZA1GLa6/MH3/pKaHW68HnH2xAm1
/+ffXnjADDVyKeWcGJ5V5/7KK20JmIRL7+7MgggggAACCCDQaYFWw6L3+q/6MXXss7+vZkdGnLs8
vWOH2n/mTxcaMEOGSynrpX+aVOe8I/7bd7KOUMYtT7js9LuE7SOAAAIIIICAt4B3OEz4WsWkMvrf
+Dp19DOXqsnnn0ut0+zx4+rY5y5Te2p3khdRr9DhUsp7+aVJ9cF/n373eCtBk3CZ2nVYAAEEEEAA
AQTKIiA3tgT9ue5adeIbN6jRO9fUHpD+AzU3M5N5V2cOH1YjK1eErVdtP83X+PcfSyw/S6XHx2fV
t//3cfWeX9ideZpc1vn0pw6oG5YeU2vvP6l+8PyE2r9vWg0en1FDgzPq4IFpbujJ0hgsiwACCCCA
AAIIdIvAzMyc2vrMuFp5x1D0GKK/+suj6to/OxL9yN9vuuG4Wr5sSD38wIh6ofYtPhIefV6MXPoo
sQwCCCCAAAIIIICAlwDh0ouJhRBAAAEEEEAAAQR8BAiXPkosgwACCCCAAAIIIOAlQLj0YmIhBBBA
AAEEEEAAAR8BwqWPEssggAACCCCAAAIIeAkQLr2YWAgBBBBAAAEEEEDAR4Bw6aPEMggggAACCCCA
AAJeAoRLLyYWQgABBBBAAAEEEPARIFz6KLEMAggggAACCCCAgJcA4dKLiYUQQAABBBBAAAEEfAQI
lz5KLIMAAggggAACCCDgJUC49GJiIQQQQAABBBBAAAEfAcKljxLLIIAAAggggAACCHgJEC69mFgI
AQQQQAABBBBAwEeAcOmjxDIIIIAAAggggAACXgKESy8mFkIAAQQQQAABBBDwESBc+iixDAIIIIAA
AggggICXAOHSi4mFEEAAAQQQQAABBHwECJc+SiyDAAIIIIAAAggg4CVAuPRiYiEEEEAAAQQQQAAB
HwHCpY8SyyCAAAIIIIAAAgh4CRAuvZhYCAEEEEAAAQQQQMBHgHDpo8QyCCCAAAIIIIAAAl4ChEsv
JhZCAAEE/AUeeughxQ8G9AH6QK/2AcKl//mCJRFAAAEvATmh8EIAAQR6VYBw2astz34jgEBhAoTL
wmgpGAEEKiBAuKxAI1FFBBColgDhslrtRW0RQCCsAOEyrCelIYAAAtH1lrwQQACBXhUgXPZqy7Pf
CCBQmADhsjBaCkYAgQoIEC4r0EhUEQEEqiVAuKxWe1FbBBAIK0C4DOtJaQgggADT4vQBBBDoaQHC
ZU83PzuPAAJFCDByWYQqZSKAQFUECJdVaSnqiQAClREgXFamqagoAggUIEC4LACVIhFAoLcFCJe9
3f7sPQK9LkC47PUewP4jgEBwAcJlcFIKRACBCgkQLivUWFQVAQSqIUC4rEY7UUsEEChGgHBZjCul
IoBADwsQLnu48dl1BBBQhEs6AQIIIBBYgHAZGJTiEECgUgKEy0o1F5VFAIEqCBAuq9BK1BEBBIoS
IFwWJUu5CCDQswKEy55tenYcAQRqAoRLugECCCAQWIBwGRiU4hBAoFIChMtKNReVRQCBKggQLqvQ
StQRAQSKEiBcFiVLuQgg0LMChMuebXp2HAEEmBanDyCAAALhBQiX4U0pEQEEqiPAyGV12oqaIoBA
RQQIlxVpKKqJAAKFCBAuC2GlUAQQ6GUBwmUvtz77jgAC/x+9e45fD6F8igAAAABJRU5ErkJggg==
使用:
// Base64 在CSS中的使用
.box{
background-image: url("...");
}
// Base64 在HTML中的使用
<img src="..." />
以上编码是我通过:http://www.yzcopen.com/img/imgbase64 进行图片转换得到的结果
相关推荐
- Python自动化脚本应用与示例(python办公自动化脚本)
-
Python是编写自动化脚本的绝佳选择,因其语法简洁、库丰富且跨平台兼容性强。以下是Python自动化脚本的常见应用场景及示例,帮助你快速上手:一、常见自动化场景文件与目录操作...
- Python文件操作常用库高级应用教程
-
本文是在前面《Python文件操作常用库使用教程》的基础上,进一步学习Python文件操作库的高级应用。一、高级文件系统监控1.1watchdog库-实时文件系统监控安装与基本使用:...
- Python办公自动化系列篇之六:文件系统与操作系统任务
-
作为高效办公自动化领域的主流编程语言,Python凭借其优雅的语法结构、完善的技术生态及成熟的第三方工具库集合,已成为企业数字化转型过程中提升运营效率的理想选择。该语言在结构化数据处理、自动化文档生成...
- 14《Python 办公自动化教程》os 模块操作文件与文件夹
-
在日常工作中,我们经常会和文件、文件夹打交道,比如将服务器上指定目录下文件进行归档,或将爬虫爬取的数据根据时间创建对应的文件夹/文件,如果这些还依靠手动来进行操作,无疑是费时费力的,这时候Pyt...
- python中os模块详解(python os.path模块)
-
os模块是Python标准库中的一个模块,它提供了与操作系统交互的方法。使用os模块可以方便地执行许多常见的系统任务,如文件和目录操作、进程管理、环境变量管理等。下面是os模块中一些常用的函数和方法:...
- 21-Python-文件操作(python文件的操作步骤)
-
在Python中,文件操作是非常重要的一部分,它允许我们读取、写入和修改文件。下面将详细讲解Python文件操作的各个方面,并给出相应的示例。1-打开文件...
- 轻松玩转Python文件操作:移动、删除
-
哈喽,大家好,我是木头左!Python文件操作基础在处理计算机文件时,经常需要执行如移动和删除等基本操作。Python提供了一些内置的库来帮助完成这些任务,其中最常用的就是os模块和shutil模块。...
- Python 初学者练习:删除文件和文件夹
-
在本教程中,你将学习如何在Python中删除文件和文件夹。使用os.remove()函数删除文件...
- 引人遐想,用 Python 获取你想要的“某个人”摄像头照片
-
仅用来学习,希望给你们有提供到学习上的作用。1.安装库需要安装python3.5以上版本,在官网下载即可。然后安装库opencv-python,安装方式为打开终端输入命令行。...
- Python如何使用临时文件和目录(python目录下文件)
-
在某些项目中,有时候会有大量的临时数据,比如各种日志,这时候我们要做数据分析,并把最后的结果储存起来,这些大量的临时数据如果常驻内存,将消耗大量内存资源,我们可以使用临时文件,存储这些临时数据。使用标...
- Linux 下海量文件删除方法效率对比,最慢的竟然是 rm
-
Linux下海量文件删除方法效率对比,本次参赛选手一共6位,分别是:rm、find、findwithdelete、rsync、Python、Perl.首先建立50万个文件$testfor...
- Python 开发工程师必会的 5 个系统命令操作库
-
当我们需要编写自动化脚本、部署工具、监控程序时,熟练操作系统命令几乎是必备技能。今天就来聊聊我在实际项目中高频使用的5个系统命令操作库,这些可都是能让你效率翻倍的"瑞士军刀"。一...
- Python常用文件操作库使用详解(python文件操作选项)
-
Python生态系统提供了丰富的文件操作库,可以处理各种复杂的文件操作需求。本教程将介绍Python中最常用的文件操作库及其实际应用。一、标准库核心模块1.1os模块-操作系统接口主要功能...
- 11. 文件与IO操作(文件io和网络io)
-
本章深入探讨Go语言文件处理与IO操作的核心技术,结合高性能实践与安全规范,提供企业级解决方案。11.1文件读写11.1.1基础操作...
- Python os模块的20个应用实例(python中 import os模块用法)
-
在Python中,...
- 一周热门
-
-
C# 13 和 .NET 9 全知道 :13 使用 ASP.NET Core 构建网站 (1)
-
因果推断Matching方式实现代码 因果推断模型
-
git pull命令使用实例 git pull--rebase
-
面试官:git pull是哪两个指令的组合?
-
git 执行pull错误如何撤销 git pull fail
-
git pull 和git fetch 命令分别有什么作用?二者有什么区别?
-
git fetch 和git pull 的异同 git中fetch和pull的区别
-
git pull 之后本地代码被覆盖 解决方案
-
还可以这样玩?Git基本原理及各种骚操作,涨知识了
-
git命令之pull git.pull
-
- 最近发表
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)
- c语言 switch (34)
- git commit (34)