Redis 使用 List 实现消息队列的利与弊
wptr33 2025-01-12 19:06 25 浏览
什么是消息队列
消息队列是一种异步的服务间通信方式,适用于分布式和微服务架构。消息在被处理和删除之前一直存储在队列上。
每条消息仅可被一位用户处理一次。消息队列可被用于分离重量级处理、缓冲或批处理工作以及缓解高峰期工作负载。
消息队列
- Producer:消息生产者,负责产生和发送消息到 Broker;
- Broker:消息处理中心。负责消息存储、确认、重试等,一般其中会包含多个 queue;
- Consumer:消息消费者,负责从 Broker 中获取消息,并进行相应处理;
?
消息队列的使用场景有哪些呢?
消息队列在实际应用中包括如下四个场景:
- 应用耦合:发送方、接收方系统之间不需要了解双方,只需要认识消息。多应用间通过消息队列对同一消息进行处理,避免调用接口失败导致整个过程失败;
- 异步处理:多应用对消息队列中同一消息进行处理,应用间并发处理消息,相比串行处理,减少处理时间;
- 限流削峰:广泛应用于秒杀或抢购活动中,避免流量过大导致应用系统挂掉的情况;
- 消息驱动的系统:系统分为消息队列、消息生产者、消息消费者,生产者负责产生消息,消费者(可能有多个)负责对消息进行处理;
消息队列满足哪些特性
消息有序性
消息是异步处理的,但是消费者需要按照生产者发送消息的顺序来消费,避免出现后发送的消息被先处理的情况。
重复消息处理
生产者可能因为网络问题出现消息重传导致消费者可能会收到多条重复消息。
同样的消息重复多次的话可能会造成一业务逻辑多次执行,需要确保如何避免重复消费问题。
可靠性
一次保证消息的传递。如果发送消息时接收者不可用,消息队列会保留消息,直到成功地传递它。
当消费者重启后,可以继续读取消息进行处理,防止消息遗漏。
List 实现消息队列
Redis 的列表(List)是一种线性的有序结构,可以按照元素被推入列表中的顺序来存储元素,能满足「先进先出」的需求,这些元素既可以是文字数据,又可以是二进制数据。
LPUSH
生产者使用 LPUSH key element[element...] 将消息插入到队列的头部,如果 key 不存在则会创建一个空的队列再插入消息。
如下,生产者向队列 queue 先后插入了 「Java」「码哥字节」「Go」,返回值表示消息插入队列后的个数。
> LPUSH queue Java 码哥字节 Go
(integer) 3
RPOP
消费者使用 RPOP key 依次读取队列的消息,先进先出,所以 「Java」会先读取消费:
> RPOP queue
"Java"
> RPOP queue
"码哥字节"
> RPOP queue
"Go"
List队列
实时消费问题
?
65 哥:这么简单就实现了么?
别高兴的太早,LPUSH、RPOP 存在一个性能风险,生产者向队列插入数据的时候,List 并不会主动通知消费者及时消费。
我们需要写一个 while(true) 不停地调用 RPOP 指令,当有新消息就会返回消息,否则返回空。
程序需要不断轮询并判断是否为空再执行消费逻辑,这就会导致即使没有新消息写入到队列,消费者也要不停地调用 RPOP 命令占用 CPU 资源。
?
65 哥:要如何避免循环调用导致的 CPU 性能损耗呢?
Redis 提供了 BLPOP、BRPOP 阻塞读取的命令,消费者在在读取队列没有数据的时候自动阻塞,直到有新的消息写入队列,才会继续读取新消息执行业务逻辑。
BRPOP queue 0
参数 0 表示阻塞等待时间无无限制
重复消费
- 消息队列为每一条消息生成一个「全局 ID」;
- 生产者为每一条消息创建一条「全局 ID」,消费者把一件处理过的消息 ID 记录下来判断是否重复。
其实这就是幂等,对于同一条消息,消费者收到后处理一次的结果和多次的结果是一致的。
消息可靠性
?
65 哥:消费者从 List 中读取一条在消息处理过程中宕机了就会导致消息没有处理完成,可是数据已经没有保存在 List 中了咋办?
本质就是消费者在处理消息的时候崩溃了,就无法再还原消息,缺乏一个消息确认机制。
Redis 提供了 RPOPLPUSH、BRPOPLPUSH(阻塞)两个指令,含义是从 List 从读取消息的同时把这条消息复制到另一个 List 中(备份),并且是原子操作。
我们就可以在业务流程正确处理完成后再删除队列消息实现消息确认机制。如果在处理消息的时候宕机了,重启后再从备份 List 中读取消息处理。
LPUSH redisMQ 公众号 码哥字节
BRPOPLPUSH redisMQ redisMQBack
生产者用 LPUSH 把消息插入到 redisMQ 队列中,消费者使用 BRPOPLPUSH 读取消息「公众号」,同时该消息会被插入到 「redisMQBack」队列中。
如果消费成功则把「redisMQBack」的消息删除即可,异常的话可以继续从 「redisMQBack」再次读取消息处理。
redis消息确认机制
需要注意的是,如果生产者消息发送的很快,而消费者处理速度慢就会导致消息堆积,给 Redis 的内存带来过大压力。
Redission 实战
在 Java 中,我们可以利用 Redission 封装的 API 来快速实现队列,接下来码哥基于 SpringBoot 2.1.4 版本来交大家如何整合并实战。
详细 API 文档大家可查阅:https://github.com/redisson/redisson/wiki/7.-Distributed-collections
添加依赖
<dependency>
<groupId>org.redisson</groupId>
<artifactId>redisson-spring-boot-starter</artifactId>
<version>3.16.7</version>
</dependency>
添加 Redis 配置,码哥的 Redis 没有配置密码,大家根据实际情况配置即可。
spring:
application:
name: redission
redis:
host: 127.0.0.1
port: 6379
ssl: false
Java 代码实战
RBlockingDeque 继承 java.util.concurrent.BlockingDeque ,在使用过程中我们完全可以根据接口文档来选择合适的 API 去实现业务逻辑。
主要方法如下
码哥采用了双端队列来举例
@Slf4j
@Service
public class QueueService {
@Autowired
private RedissonClient redissonClient;
private static final String REDIS_MQ = "redisMQ";
/**
* 发送消息到队列头部
*
* @param message
*/
public void sendMessage(String message) {
RBlockingDeque<String> blockingDeque = redissonClient.getBlockingDeque(REDIS_MQ);
try {
blockingDeque.putFirst(message);
log.info("将消息: {} 插入到队列。", message);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
/**
* 从队列尾部阻塞读取消息,若没有消息,线程就会阻塞等待新消息插入,防止 CPU 空转
*/
public void onMessage() {
RBlockingDeque<String> blockingDeque = redissonClient.getBlockingDeque(REDIS_MQ);
while (true) {
try {
String message = blockingDeque.takeLast();
log.info("从队列 {} 中读取到消息:{}.", REDIS_MQ, message);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
单元测试
@RunWith(SpringRunner.class)
@SpringBootTest(classes = RedissionApplication.class)
public class RedissionApplicationTests {
@Autowired
private QueueService queueService;
@Test
public void testQueue() throws InterruptedException {
new Thread(() -> {
for (int i = 0; i < 1000; i++) {
queueService.sendMessage("消息" + i);
}
}).start();
new Thread(() -> queueService.onMessage()).start();
Thread.currentThread().join();
}
}
总结
可以使用 List 数据结构来实现消息队列,满足先进先出。为了实现消息可靠性,Redis 提供了 BRPOPLPUSH 命令是解决。
Redis 是一个非常轻量级的键值数据库,部署一个 Redis 实例就是启动一个进程,部署 Redis 集群,也就是部署多个 Redis 实例。
而 Kafka、RabbitMQ 部署时,涉及额外的组件,例如 Kafka 的运行就需要再部署 ZooKeeper。相比 Redis 来说,Kafka 和 RabbitMQ 一般被认为是重量级的消息队列。
需要注意的是,我们要避免生产者过快,消费者过慢导致的消息堆积占用 Redis 的内存。
在消息量不大的情况下使用 Redis 作为消息队列,他能给我们带来高性能的消息读写,这似乎也是一个很好消息队列解决方案。
大家觉得是否合适作为消息队列呢?点赞让我看看吧
来源:https://mp.weixin.qq.com/s/Pv7IXUQQnhGCGMM9n0VfkA
相关推荐
- MySQL进阶五之自动读写分离mysql-proxy
-
自动读写分离目前,大量现网用户的业务场景中存在读多写少、业务负载无法预测等情况,在有大量读请求的应用场景下,单个实例可能无法承受读取压力,甚至会对业务产生影响。为了实现读取能力的弹性扩展,分担数据库压...
- 3分钟短文 | Laravel SQL筛选两个日期之间的记录,怎么写?
-
引言今天说一个细分的需求,在模型中,或者使用laravel提供的EloquentORM功能,构造查询语句时,返回位于两个指定的日期之间的条目。应该怎么写?本文通过几个例子,为大家梳理一下。学习时...
- 一文由浅入深带你完全掌握MySQL的锁机制原理与应用
-
本文将跟大家聊聊InnoDB的锁。本文比较长,包括一条SQL是如何加锁的,一些加锁规则、如何分析和解决死锁问题等内容,建议耐心读完,肯定对大家有帮助的。为什么需要加锁呢?...
- 验证Mysql中联合索引的最左匹配原则
-
后端面试中一定是必问mysql的,在以往的面试中好几个面试官都反馈我Mysql基础不行,今天来着重复习一下自己的弱点知识。在Mysql调优中索引优化又是非常重要的方法,不管公司的大小只要后端项目中用到...
- MySQL索引解析(联合索引/最左前缀/覆盖索引/索引下推)
-
目录1.索引基础...
- 你会看 MySQL 的执行计划(EXPLAIN)吗?
-
SQL执行太慢怎么办?我们通常会使用EXPLAIN命令来查看SQL的执行计划,然后根据执行计划找出问题所在并进行优化。用法简介...
- MySQL 从入门到精通(四)之索引结构
-
索引概述索引(index),是帮助MySQL高效获取数据的数据结构(有序),在数据之外,数据库系统还维护者满足特定查询算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构...
- mysql总结——面试中最常问到的知识点
-
mysql作为开源数据库中的榜一大哥,一直是面试官们考察的重中之重。今天,我们来总结一下mysql的知识点,供大家复习参照,看完这些知识点,再加上一些边角细节,基本上能够应付大多mysql相关面试了(...
- mysql总结——面试中最常问到的知识点(2)
-
首先我们回顾一下上篇内容,主要复习了索引,事务,锁,以及SQL优化的工具。本篇文章接着写后面的内容。性能优化索引优化,SQL中索引的相关优化主要有以下几个方面:最好是全匹配。如果是联合索引的话,遵循最...
- MySQL基础全知全解!超详细无废话!轻松上手~
-
本期内容提醒:全篇2300+字,篇幅较长,可搭配饭菜一同“食”用,全篇无废话(除了这句),干货满满,可收藏供后期反复观看。注:MySQL中语法不区分大小写,本篇中...
- 深入剖析 MySQL 中的锁机制原理_mysql 锁详解
-
在互联网软件开发领域,MySQL作为一款广泛应用的关系型数据库管理系统,其锁机制在保障数据一致性和实现并发控制方面扮演着举足轻重的角色。对于互联网软件开发人员而言,深入理解MySQL的锁机制原理...
- Java 与 MySQL 性能优化:MySQL分区表设计与性能优化全解析
-
引言在数据库管理领域,随着数据量的不断增长,如何高效地管理和操作数据成为了一个关键问题。MySQL分区表作为一种有效的数据管理技术,能够将大型表划分为多个更小、更易管理的分区,从而提升数据库的性能和可...
- MySQL基础篇:DQL数据查询操作_mysql 查
-
一、基础查询DQL基础查询语法SELECT字段列表FROM表名列表WHERE条件列表GROUPBY分组字段列表HAVING分组后条件列表ORDERBY排序字段列表LIMIT...
- MySql:索引的基本使用_mysql索引的使用和原理
-
一、索引基础概念1.什么是索引?索引是数据库表的特殊数据结构(通常是B+树),用于...
- 一周热门
-
-
C# 13 和 .NET 9 全知道 :13 使用 ASP.NET Core 构建网站 (1)
-
程序员的开源月刊《HelloGitHub》第 71 期
-
详细介绍一下Redis的Watch机制,可以利用Watch机制来做什么?
-
假如有100W个用户抢一张票,除了负载均衡办法,怎么支持高并发?
-
如何将AI助手接入微信(打开ai手机助手)
-
Java面试必考问题:什么是乐观锁与悲观锁
-
SparkSQL——DataFrame的创建与使用
-
redission YYDS spring boot redission 使用
-
一文带你了解Redis与Memcached? redis与memcached的区别
-
如何利用Redis进行事务处理呢? 如何利用redis进行事务处理呢英文
-
- 最近发表
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)
- c语言 switch (34)
- git commit (34)