富士X-H2:主打高分辨率 成像画质符合预期
wptr33 2025-01-17 13:11 33 浏览
最近国外媒体DigitalCameraWorld对富士X-H2相机进行了测试,从结论来看,这款此昂了4000万像素的机身画质是符合预期的。
富士X-H2画质符合预期
4000万像素传感器本身具有足够高的分辨率,X-H2还具有像素移位功能,可用20 张图像生成 1.6亿像素图像。但图像合成不能在机内合成,需要后期处理完成。
X-H2的传感器不是堆栈式,读取速度比X-H2S慢,但一点也不差。使用机械快门的连拍速度可达每秒15张,可与许多主打高速的相机相比。X-H2S的滚动快门扫描速度为1/180秒,X-H2为1/88秒。
富士方面承认,由于读出性能差异,X-H2的自动对焦跟踪性能不如 X-H2S,主要侧重于高分辨率。
这款相机的8K视频录制时间为160分钟(25℃),选配散热风扇可达240分钟,这相当于惊人的无限录制。
X-H2体积并不算大,但它的握柄很深,便于握持。感觉与富士小镜头搭配平衡做得很好,即使搭配XF16-55mm F2.8也没什么问题。
576万点的EVF非常清晰,相机显示屏及肩屏非常好。
X-H2理论上应该比 X-H2S 慢,但自动对焦仍然快速、准确且非常灵敏。
实验室分辨率测试:不出所料,4020万像素的X-H2是迄今为止表现最好的,它比竞争对手的分辨率更精细。
富士X-H2分辨率很出色
实验室动态范围测试:X-H2可捕获可观的动态范围,尽管与X-H2S相比,它像素更多的传感器在此测试中稍有妥协。不过,在更高的ISO下,差距确实会缩小。
富士X-H2动态范围比X-H2S觉有妥协
在更高的ISO下对比,X-H2比EOS R7和α6600噪点略低,信噪比更高。但它仍然不及X-H2S ,后者在物理上具有更大的像素点面积和更少的噪点。
富士X-H2高感不及X-H2S
X-H2相机整体的操控性非常好,其规格引人入胜,价格也同样令人印象深刻。它有一个较小的传感器,但性能规格却接近价格是它2-3倍的全画幅机身。成像质量与我们预期的一样好,分辨率也没有让人失望,X-H2真正为APS-C相机设定了新标准。
优点:可拍摄4000万像素的静止图像、具有较长录制时间的8K视频、15/20 fps 高速连拍、1.6亿像素多重模式。
缺点:冷却风扇需单独出售,速度上X-H2S更快。
- end -
编译 | 毕超/粱爽
- 上一篇:不完美也是一种美
- 下一篇:XH新风换气机机组功能特点简介
相关推荐
- MySQL进阶五之自动读写分离mysql-proxy
-
自动读写分离目前,大量现网用户的业务场景中存在读多写少、业务负载无法预测等情况,在有大量读请求的应用场景下,单个实例可能无法承受读取压力,甚至会对业务产生影响。为了实现读取能力的弹性扩展,分担数据库压...
- 3分钟短文 | Laravel SQL筛选两个日期之间的记录,怎么写?
-
引言今天说一个细分的需求,在模型中,或者使用laravel提供的EloquentORM功能,构造查询语句时,返回位于两个指定的日期之间的条目。应该怎么写?本文通过几个例子,为大家梳理一下。学习时...
- 一文由浅入深带你完全掌握MySQL的锁机制原理与应用
-
本文将跟大家聊聊InnoDB的锁。本文比较长,包括一条SQL是如何加锁的,一些加锁规则、如何分析和解决死锁问题等内容,建议耐心读完,肯定对大家有帮助的。为什么需要加锁呢?...
- 验证Mysql中联合索引的最左匹配原则
-
后端面试中一定是必问mysql的,在以往的面试中好几个面试官都反馈我Mysql基础不行,今天来着重复习一下自己的弱点知识。在Mysql调优中索引优化又是非常重要的方法,不管公司的大小只要后端项目中用到...
- MySQL索引解析(联合索引/最左前缀/覆盖索引/索引下推)
-
目录1.索引基础...
- 你会看 MySQL 的执行计划(EXPLAIN)吗?
-
SQL执行太慢怎么办?我们通常会使用EXPLAIN命令来查看SQL的执行计划,然后根据执行计划找出问题所在并进行优化。用法简介...
- MySQL 从入门到精通(四)之索引结构
-
索引概述索引(index),是帮助MySQL高效获取数据的数据结构(有序),在数据之外,数据库系统还维护者满足特定查询算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构...
- mysql总结——面试中最常问到的知识点
-
mysql作为开源数据库中的榜一大哥,一直是面试官们考察的重中之重。今天,我们来总结一下mysql的知识点,供大家复习参照,看完这些知识点,再加上一些边角细节,基本上能够应付大多mysql相关面试了(...
- mysql总结——面试中最常问到的知识点(2)
-
首先我们回顾一下上篇内容,主要复习了索引,事务,锁,以及SQL优化的工具。本篇文章接着写后面的内容。性能优化索引优化,SQL中索引的相关优化主要有以下几个方面:最好是全匹配。如果是联合索引的话,遵循最...
- MySQL基础全知全解!超详细无废话!轻松上手~
-
本期内容提醒:全篇2300+字,篇幅较长,可搭配饭菜一同“食”用,全篇无废话(除了这句),干货满满,可收藏供后期反复观看。注:MySQL中语法不区分大小写,本篇中...
- 深入剖析 MySQL 中的锁机制原理_mysql 锁详解
-
在互联网软件开发领域,MySQL作为一款广泛应用的关系型数据库管理系统,其锁机制在保障数据一致性和实现并发控制方面扮演着举足轻重的角色。对于互联网软件开发人员而言,深入理解MySQL的锁机制原理...
- Java 与 MySQL 性能优化:MySQL分区表设计与性能优化全解析
-
引言在数据库管理领域,随着数据量的不断增长,如何高效地管理和操作数据成为了一个关键问题。MySQL分区表作为一种有效的数据管理技术,能够将大型表划分为多个更小、更易管理的分区,从而提升数据库的性能和可...
- MySQL基础篇:DQL数据查询操作_mysql 查
-
一、基础查询DQL基础查询语法SELECT字段列表FROM表名列表WHERE条件列表GROUPBY分组字段列表HAVING分组后条件列表ORDERBY排序字段列表LIMIT...
- MySql:索引的基本使用_mysql索引的使用和原理
-
一、索引基础概念1.什么是索引?索引是数据库表的特殊数据结构(通常是B+树),用于...
- 一周热门
-
-
C# 13 和 .NET 9 全知道 :13 使用 ASP.NET Core 构建网站 (1)
-
程序员的开源月刊《HelloGitHub》第 71 期
-
详细介绍一下Redis的Watch机制,可以利用Watch机制来做什么?
-
假如有100W个用户抢一张票,除了负载均衡办法,怎么支持高并发?
-
如何将AI助手接入微信(打开ai手机助手)
-
Java面试必考问题:什么是乐观锁与悲观锁
-
SparkSQL——DataFrame的创建与使用
-
redission YYDS spring boot redission 使用
-
一文带你了解Redis与Memcached? redis与memcached的区别
-
如何利用Redis进行事务处理呢? 如何利用redis进行事务处理呢英文
-
- 最近发表
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)
- c语言 switch (34)
- git commit (34)