百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT技术 > 正文

基于Spark分布式并行处理技术,美林数据有效提升数据处理能力

wptr33 2025-02-18 13:40 24 浏览

由于Spark在使用JDBC方式读取关系型模型数据的时候,默认采用单线程任务执行。在数据量较大时,经常发现内存溢出、性能低的问题。在扩大内存读取后进行重分区,又会消耗时间,浪费资源。
因此,开发并发读取关系型模型数据,可以有效提高任务处理并发度,减少单个任务的数据处理量,进而提升处理效率。

分布式并发处理优化


(一)总体思路
关系型模型并发读取首先要选取分区字段,按照字段类型和分区个数确定并发分区间隔的key值。假设key值可以将模型数据均匀划分成多个逻辑分区,根据key值构成查询条件将模型数据进行并发读取。其中的关键点包括:
1、分区字段的选取规则
(a)初步确定模型中第一个字符或者数值型字段。
2、分区个数
(a)给出默认分区个数,测试读写后按照1000w数据量给出建议的资源配比和默认分区个数。
(b)允许用户进行自定义配置。
3、静态分区策略
(a)数值型:转换成字符并逆序,按照数值位取值的字符范围和分区个数确定并发分区间隔的key值,进行多分区构造。
(b)字符型:逆序后按照单字符取值范围和分区个数确定并发分区间隔的key值,进行多分区构造。
(二)总体处理流程
总体处理流程如图所示:

分区个数合法校验及处理规则:分区个数合法校验及处理规则为分区个数必须在[1,range]范围内,超出下限按照一个分区处理,超出上限按照上限range处理。支持的最大分区个数(range)字符型为64的4次方,数值型为10000。
(三)阈值范围并发读取
阈值范围并发读取适合分区字段为数值类型的模型。
关键参数:
partitionColumn:分区字段名称
lowerBound:取值下限
upperBound:取值上限
numPartitions:分区个数
(四)默认并发读取
默认并发读取适应于字符和数值类型的分区字段,按照类型的取值范围获取近似均分的过滤条件,将数据按照条件分配到不同的逻辑分区中,并以并发执行来提升数据读取效率。
1、模型并发读取
模型并发读取设计按照分区个数不同采用不同的接口调用方式。
?分区个数为1

val url = "jdbc:mysql://host:3306/test"
val prop = new java.util.Properties
prop.setProperty("user", "***")
prop.setProperty("password", "***")
prop.setProperty("driver", "com.mysql.jdbc.Driver")
val df = spark.sqlContext.read.jdbc(url,"tname",prop)

url为数据库连接串信息。
tname为查询的表名,也支持查询条件,形如:

(select * from ronghe_mysql_bigint_50wwhere cast(RY_YGGH as UNSIGNED) > 250000)tmp

prop为数据库连接信息、用户名、密码、driver等配置信息。
?分区个数大于1

val url = "jdbc:mysql://host:3306/test"
val prop = new java.util.Properties
prop.setProperty("user", "***")
prop.setProperty("password", "***")
prop.setProperty("driver", "com.mysql.jdbc.Driver")
val df = spark.sqlContext.read.jdbc(url,"tname",predicates,prop)

多分区并发读取比分区个数为1的参数增加了分区预划分条件。
其中,predicates为分区预划分条件,Array[String],读取时按照每个元素内容过滤数据。
2、分区预划分条件
分区预划分条件是由多个条件构成的字符串数据。

val predicates = Array[String](
" cols < '3'",
" cols >= '3' and cols <'6'",
" cols >= '6'
)

分区预划分条件包括分区条件列和比对值。分区条件值由选取的分区字段及其操作构成,比对值即为静态分区间隔值。考虑到有序数值型、字符型在业务场景中使用一般高位相似低位差异明显,因此对分区字段进行逆序处理。
假设分区字段为splitCol。
splitCol为数值类型时:分区条件列cols 为reverse(cast(splitColas char))。
splitCol为字符类型时:分区条件列cols 为reverse(splitCol)。
假设分区间隔值为splitKeys(Array[String]),长度为L。对比值按照左闭右开的方式构造。
第一个条件为cols < splitKeys(0);
第二个条件为cols >= splitKeys(0) and cols < splitKeys(1);
第i个条件为cols >= splitKeys(i-2)and cols < splitKeys(i-1);
最后一个条件为cols >= splitKeys(L-1)。
3、分区个数
模型并发读取设计,按照四位字符来表示分区间隔值。那么,可表示的值范围即为每位可取的值个数的四次方。
设定字符每位可取64个,数字可取的值个数10,即支持的最大分区个数(range):字符型(64的4次方)、数值型(10000)。
4、静态分区间隔值获取
实现思路
按照字段类型的字符范围找到分区间隔值,即找到间隔值所表示范围的近似均分位置点。
假定分区间隔值使用四位字符表示。(设N个分区)
数字类型字符间隔值寻找思路:
(1)数字取值[0,9](暂不考虑小数点,按位将被分到小于0对应的分区),表示范围:1, 2, 3,……,9998,9999。
(2)找到每个分片的大小范围S,表示范围个数除以分区个数(10^4/(N-1))。
(3)S-1,2S-1,3S-1,……,(N-1)*S-1即为可以将四位数均分的间隔值。
字符类型间隔值寻找思路(取值范围64个字符,优化算法):

(1)按照常用程度,将间隔值每位字符取值范围确定为:Array('.', '0', '1', '2', '3','4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J','K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z','a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p','q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '~')
(2)不常用字符将被归到最临近的一个分区,中文字符将被归到最后一个分区,避免不常用字符的独占一个分区情况,以减少对资源的消耗。
(3)找到每个分段的大小范围S,表示范围个数除以分区个数(64^4/(N-1))
(4)同数字字符间隔值,将字符间隔值理解成64进制的数字(可以采用移位运算快速获取),那么S-1,2S-1,3S-1,……,(N-1)*S-1就是将四位字符近似均分的数字,每位对应的字符间隔值数组中的字符构成的字符串即为间隔值。

十进制转为64进制,以十进制数keyInt为例,tmp为转换后结果数组:digitsNum为表示位数4。

for (j <- 1 to digitsNum) {
tmp(digitsNum - j) = charactors(keyInt & (charLength - 1))
keyInt >>= 6
}

字符类型间隔值寻找思路(取值范围任意个字符,通用算法):
与字符类型字符间隔值总体寻找思路一致,但不受取值范围个数的限制。
(1)按照常用程度,将间隔值每位字符取值范围确定为Array(……),元素个数为m。
(2)不常用字符将被归到最临近的一个分区,中文字符将被归到最后一个分区,避免不常用字符的独占一个分区情况,以减少对资源的消耗。
(3)找到每个分段的大小范围S,表示范围个数除以分区个数(m^4/(N-1))。
(4)同数字字符间隔值,将字符间隔值理解成m进制的数字,那么S-1,2S-1,3S-1,……,(N-1)*S-1就是将四位字符近似均分的数字,这些数字对应的字符串即为均分字符范围的间隔值(数字每一位对应的字符间隔值数组中的字符构成的字符串即为间隔值)。
十进制转为m进制,以十进制数keyInt为例,tmp为转换后结果数组:digitsNum为表示位数4。

for (j <- 1 to digitsNum) {
tmp(digitsNum - j) = charactors(keyInt % m)
keyInt = math.floor(keyInt / m).toInt
}


测试结果

在数据资产平台中,以50万、1000万的数据进行同步性能测试,测试结果如下表:


总结与展望

按照分区字段并发读取数据进行处理能够有效提升数据的处理能力,但受分区字段取值范围、数据分布情况的影响,效果不尽相同,后续将对分区策略进行持续优化,以达到适应各种业务场景的性能要求。

相关推荐

MySQL进阶五之自动读写分离mysql-proxy

自动读写分离目前,大量现网用户的业务场景中存在读多写少、业务负载无法预测等情况,在有大量读请求的应用场景下,单个实例可能无法承受读取压力,甚至会对业务产生影响。为了实现读取能力的弹性扩展,分担数据库压...

Postgres vs MySQL_vs2022连接mysql数据库

...

3分钟短文 | Laravel SQL筛选两个日期之间的记录,怎么写?

引言今天说一个细分的需求,在模型中,或者使用laravel提供的EloquentORM功能,构造查询语句时,返回位于两个指定的日期之间的条目。应该怎么写?本文通过几个例子,为大家梳理一下。学习时...

一文由浅入深带你完全掌握MySQL的锁机制原理与应用

本文将跟大家聊聊InnoDB的锁。本文比较长,包括一条SQL是如何加锁的,一些加锁规则、如何分析和解决死锁问题等内容,建议耐心读完,肯定对大家有帮助的。为什么需要加锁呢?...

验证Mysql中联合索引的最左匹配原则

后端面试中一定是必问mysql的,在以往的面试中好几个面试官都反馈我Mysql基础不行,今天来着重复习一下自己的弱点知识。在Mysql调优中索引优化又是非常重要的方法,不管公司的大小只要后端项目中用到...

MySQL索引解析(联合索引/最左前缀/覆盖索引/索引下推)

目录1.索引基础...

你会看 MySQL 的执行计划(EXPLAIN)吗?

SQL执行太慢怎么办?我们通常会使用EXPLAIN命令来查看SQL的执行计划,然后根据执行计划找出问题所在并进行优化。用法简介...

MySQL 从入门到精通(四)之索引结构

索引概述索引(index),是帮助MySQL高效获取数据的数据结构(有序),在数据之外,数据库系统还维护者满足特定查询算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构...

mysql总结——面试中最常问到的知识点

mysql作为开源数据库中的榜一大哥,一直是面试官们考察的重中之重。今天,我们来总结一下mysql的知识点,供大家复习参照,看完这些知识点,再加上一些边角细节,基本上能够应付大多mysql相关面试了(...

mysql总结——面试中最常问到的知识点(2)

首先我们回顾一下上篇内容,主要复习了索引,事务,锁,以及SQL优化的工具。本篇文章接着写后面的内容。性能优化索引优化,SQL中索引的相关优化主要有以下几个方面:最好是全匹配。如果是联合索引的话,遵循最...

MySQL基础全知全解!超详细无废话!轻松上手~

本期内容提醒:全篇2300+字,篇幅较长,可搭配饭菜一同“食”用,全篇无废话(除了这句),干货满满,可收藏供后期反复观看。注:MySQL中语法不区分大小写,本篇中...

深入剖析 MySQL 中的锁机制原理_mysql 锁详解

在互联网软件开发领域,MySQL作为一款广泛应用的关系型数据库管理系统,其锁机制在保障数据一致性和实现并发控制方面扮演着举足轻重的角色。对于互联网软件开发人员而言,深入理解MySQL的锁机制原理...

Java 与 MySQL 性能优化:MySQL分区表设计与性能优化全解析

引言在数据库管理领域,随着数据量的不断增长,如何高效地管理和操作数据成为了一个关键问题。MySQL分区表作为一种有效的数据管理技术,能够将大型表划分为多个更小、更易管理的分区,从而提升数据库的性能和可...

MySQL基础篇:DQL数据查询操作_mysql 查

一、基础查询DQL基础查询语法SELECT字段列表FROM表名列表WHERE条件列表GROUPBY分组字段列表HAVING分组后条件列表ORDERBY排序字段列表LIMIT...

MySql:索引的基本使用_mysql索引的使用和原理

一、索引基础概念1.什么是索引?索引是数据库表的特殊数据结构(通常是B+树),用于...