百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT技术 > 正文

MySQL中关于join的算法详解

wptr33 2025-02-26 14:05 22 浏览

一 背景

在MySQL中我们为了实现业务逻辑会进行多表关联查询.也就是我们常说的各种join.那么我们怎么使用join才会获得好的执行效果呢?

二 Nested-Loop Join 又称SNL

什么是SNL呢?借用官网上的一段伪代码:

for each row in t1 matching range {
  for each row in t2 matching reference key {
    for each row in t3 {
      if row satisfies join conditions, send to client
    }
  }
}

比如:

select a.* from test a join test1 b on a.c=b.c;
其中test表没有索引所以会全表扫描,test1表的c列有索引.所以test1表将会使用索引.

那么SNL的执行逻辑是什么样的呢?

对test表的c列进行全表扫描然一个一个的去test1表(test1使用索引)获取对应的值.然后再回表test获取所有记录.然后返回给客户端.

执行计划查看:

    "nested_loop": [
      {
        "table": {
          "table_name": "a",   --test表
          "access_type": "ALL",   --可以看到test表进行了全表扫描
          "rows_examined_per_scan": 986400,
          "rows_produced_per_join": 986400,
          "filtered": "100.00",
          "cost_info": {
            "read_cost": "13741.00",
            "eval_cost": "197280.00",
            "prefix_cost": "211021.00",
            "data_read_per_join": "180M"
          },
          "used_columns": [
            "id",
            "k",
            "c",
            "pad"
          ]
        }
      },
      {
        "table": {
          "table_name": "b",    --test1表
          "access_type": "ref",  --使用了非唯一索引的等值查询
          "possible_keys": [
            "idx_c"
          ],
          "key": "idx_c",
          "used_key_parts": [
            "c"
          ],
          "key_length": "120",
          "ref": [
            "increment.a.c"
          ],
          "rows_examined_per_scan": 1,
          "rows_produced_per_join": 986400,
          "filtered": "100.00",
          "using_index": true,
          "cost_info": {
            "read_cost": "986400.00",
            "eval_cost": "197280.00",
            "prefix_cost": "1394701.00",
            "data_read_per_join": "180M"
          },
          "used_columns": [
            "c"

通过对SNL的实现逻辑及执行计划分析发现:

驱动表test越小.那么执行效率就越高

三 Block Nested-Loop Join 又称BNL

伪代码如下:

for block row in a matching range {
?for each row in b {
??a.x = b.y ,send to client
?}
}

语句还是:

select a.* from test a join test1 b on a.c=b.c;
现在不同的是,test表和test1表的相关列都没有索引

BNL的实现逻辑:

批量的从test表取数据放入join buffer如果一次性能放到join buffer则全部放入,然后一次性匹配test1中满足条件的c列,然后返回客户端.如果一次性不能把test中的数据全部放入join buffer则循环上边的流程.直到全部全完为止.

执行计划分析

  "nested_loop": [
      {
        "table": {
          "table_name": "b",    --test1表
          "access_type": "ALL",  --可以看到是全表扫描
          "rows_examined_per_scan": 9680,
          "rows_produced_per_join": 9680,
          "filtered": "100.00",
          "cost_info": {
            "read_cost": "161.00",
            "eval_cost": "1936.00",
            "prefix_cost": "2097.00",
            "data_read_per_join": "1M"
          },
          "used_columns": [
            "c"     --可以看到只使用了c列和join buffer中的test进行对比
          ]
        }
      },
      {
        "table": {
          "table_name": "a",   --test表
          "access_type": "ALL",   --也是全表扫描
          "rows_examined_per_scan": 986400,
          "rows_produced_per_join": 954835214,
          "filtered": "10.00",
          "using_join_buffer": "Block Nested Loop",    --可以看到使用了BNL
          "cost_info": {
            "read_cost": "21352.06",
            "eval_cost": "190967042.85",
            "prefix_cost": "1909693849.06",
            "data_read_per_join": "170G"
          },
          "used_columns": [
            "id",
            "k",
            "c",
            "pad"
          ],
          "attached_condition": "(`increment`.`a`.`c` = `increment`.`b`.`c`)"

同样.可以看到驱动表test越小的话.效率就会越高.

注意:从MySQL的8020版本开始.将废弃BNL.因为从MySQL8018版本开始就加入了hash join默认都会使用hash join

同样.我们在此看一下mysql8020版本的hash join的执行计划

    "nested_loop": [
      {
        "table": {
          "table_name": "b",
          "access_type": "ALL",
          "rows_examined_per_scan": 1000,
          "rows_produced_per_join": 1000,
          "filtered": "100.00",
          "cost_info": {
            "read_cost": "0.25",
            "eval_cost": "100.00",
            "prefix_cost": "100.25",
            "data_read_per_join": "718K"
          },
          "used_columns": [
            "c"
          ]
        }
      },
      {
        "table": {
          "table_name": "a",
          "access_type": "ALL",
          "rows_examined_per_scan": 9936,
          "rows_produced_per_join": 993600,
          "filtered": "10.00",
          "using_join_buffer": "hash join",   --可以看到这里使用了hash join
          "cost_info": {
            "read_cost": "113.95",
            "eval_cost": "99360.00",
            "prefix_cost": "993814.20",
            "data_read_per_join": "697M"
          },
          "used_columns": [
            "id",
            "k",
            "c",
            "pad"
          ],
          "attached_condition": "(`world`.`a`.`c` = `world`.`b`.`c`)"

同时在上边的BNL和hash join我展示的两个例子中.不知道大家注意到没有.优化器默认选择了表数据量小的表作为了驱动表.上边的BNL展示中的test表是100万的数据,test1是1万的数据.hash join展示使用的test表是1万数据.test1是1千的数据量.

最后.不管哪种算法.都最好使用驱动表结果集小的作为驱动表.优化器也会自己去选择.

三 优化算法MRR(Multi-Range Read Optimization)

在此提到MRR算法是为了下边的BKA算法提供铺垫.大家看看MRR的实现原理就好了.不要单独开启MRR.因为实际压测显示单独开启MRR的效果不理想.

MRR是为了实现什么呢?

实验环境准备:

mysql> desc test1;
+-------+-----------+------+-----+---------+----------------+
| Field | Type      | Null | Key | Default | Extra          |
+-------+-----------+------+-----+---------+----------------+
| id    | int       | NO   | PRI | NULL    | auto_increment |
| k     | int       | NO   | MUL | 0       |                |
| c     | char(120) | NO   |     |         |                |
| pad   | char(60)  | NO   |     |         |                |
+-------+-----------+------+-----+---------+----------------+
4 rows in set (0.00 sec)

mysql> show index from test1;
+-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+---------+------------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment | Visible | Expression |
+-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+---------+------------+
| test1 |          0 | PRIMARY  |            1 | id          | A         |        1000 |     NULL |   NULL |      | BTREE      |         |               | YES     | NULL       |
| test1 |          1 | idx_k    |            1 | k           | A         |         311 |     NULL |   NULL |      | BTREE      |         |               | YES     | NULL       |
+-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+---------+------------+
2 rows in set (0.01 sec)

执行查询


在没有开启MRR的情况下.这条语句的执行逻辑是这样的

也就是说会范围扫描索引之后.会回表进行随机的磁盘读.

接下来我们开启MRR

mysql> set optimizer_switch="mrr_cost_based=off";

接下来再执行上边的查询查看执行计划:


在这里我们看到使用到了MRR.那么我们看看使用了MRR之后的执行逻辑是什么样的

在这里我们看到开启MRR之后.索引范围扫描获取到的数据先存储到buffer中进行排序.然后使用主键顺序的回表取数据.减少了随机读的时间浪费.

四 Batched Key Access Joins(BKA)算法

BKA算法可以被inner join和outer join及semi join使用.BKA场景和SNL算法的应用条件差不多.就是test1表对应列有索引.不同的是BKA会使用到MRR算法.同时还会使用到join buffer

开启BKA

mysql> SET optimizer_switch='mrr=on,mrr_cost_based=off,batched_key_access=on';

环境准备:



执行查询并查看执行计划:

 "nested_loop": [
      {
        "table": {
          "table_name": "test",
          "access_type": "ALL",
          "rows_examined_per_scan": 986400,
          "rows_produced_per_join": 986400,
          "filtered": "100.00",
          "cost_info": {
            "read_cost": "13741.00",
            "eval_cost": "197280.00",
            "prefix_cost": "211021.00",
            "data_read_per_join": "180M"
          },
          "used_columns": [
            "id",
            "k",
            "c",
            "pad"
          ]
        }
      },
      {
        "table": {
          "table_name": "test1",
          "access_type": "ref",
          "possible_keys": [
            "idx_c"
          ],
          "key": "idx_c",
          "used_key_parts": [
            "c"
          ],
          "key_length": "120",
          "ref": [
            "increment.test.c"
          ],
          "rows_examined_per_scan": 1,
          "rows_produced_per_join": 986400,
          "filtered": "100.00",
          "using_join_buffer": "Batched Key Access",   --在这里可以看到.使用到了BKA和join buffer
          "cost_info": {
            "read_cost": "986400.00",
            "eval_cost": "197280.00",
            "prefix_cost": "1394701.00",
            "data_read_per_join": "180M"
          },
          "used_columns": [
            "id",
            "k",
            "c",
            "pad"

那么BKA的执行逻辑是什么样的呢?

在这里我们可以和前边的SNL的图对比发现.BKA先从test表取出数据和test1中的的c列对比取出并集.然后在join buffer中排序.再一次性去test中顺序取出数据.这里使用到了MRR的排序算法.

五 总结

本篇文章主要介绍了MySQL中的join算法.

相关推荐

MySQL进阶五之自动读写分离mysql-proxy

自动读写分离目前,大量现网用户的业务场景中存在读多写少、业务负载无法预测等情况,在有大量读请求的应用场景下,单个实例可能无法承受读取压力,甚至会对业务产生影响。为了实现读取能力的弹性扩展,分担数据库压...

Postgres vs MySQL_vs2022连接mysql数据库

...

3分钟短文 | Laravel SQL筛选两个日期之间的记录,怎么写?

引言今天说一个细分的需求,在模型中,或者使用laravel提供的EloquentORM功能,构造查询语句时,返回位于两个指定的日期之间的条目。应该怎么写?本文通过几个例子,为大家梳理一下。学习时...

一文由浅入深带你完全掌握MySQL的锁机制原理与应用

本文将跟大家聊聊InnoDB的锁。本文比较长,包括一条SQL是如何加锁的,一些加锁规则、如何分析和解决死锁问题等内容,建议耐心读完,肯定对大家有帮助的。为什么需要加锁呢?...

验证Mysql中联合索引的最左匹配原则

后端面试中一定是必问mysql的,在以往的面试中好几个面试官都反馈我Mysql基础不行,今天来着重复习一下自己的弱点知识。在Mysql调优中索引优化又是非常重要的方法,不管公司的大小只要后端项目中用到...

MySQL索引解析(联合索引/最左前缀/覆盖索引/索引下推)

目录1.索引基础...

你会看 MySQL 的执行计划(EXPLAIN)吗?

SQL执行太慢怎么办?我们通常会使用EXPLAIN命令来查看SQL的执行计划,然后根据执行计划找出问题所在并进行优化。用法简介...

MySQL 从入门到精通(四)之索引结构

索引概述索引(index),是帮助MySQL高效获取数据的数据结构(有序),在数据之外,数据库系统还维护者满足特定查询算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构...

mysql总结——面试中最常问到的知识点

mysql作为开源数据库中的榜一大哥,一直是面试官们考察的重中之重。今天,我们来总结一下mysql的知识点,供大家复习参照,看完这些知识点,再加上一些边角细节,基本上能够应付大多mysql相关面试了(...

mysql总结——面试中最常问到的知识点(2)

首先我们回顾一下上篇内容,主要复习了索引,事务,锁,以及SQL优化的工具。本篇文章接着写后面的内容。性能优化索引优化,SQL中索引的相关优化主要有以下几个方面:最好是全匹配。如果是联合索引的话,遵循最...

MySQL基础全知全解!超详细无废话!轻松上手~

本期内容提醒:全篇2300+字,篇幅较长,可搭配饭菜一同“食”用,全篇无废话(除了这句),干货满满,可收藏供后期反复观看。注:MySQL中语法不区分大小写,本篇中...

深入剖析 MySQL 中的锁机制原理_mysql 锁详解

在互联网软件开发领域,MySQL作为一款广泛应用的关系型数据库管理系统,其锁机制在保障数据一致性和实现并发控制方面扮演着举足轻重的角色。对于互联网软件开发人员而言,深入理解MySQL的锁机制原理...

Java 与 MySQL 性能优化:MySQL分区表设计与性能优化全解析

引言在数据库管理领域,随着数据量的不断增长,如何高效地管理和操作数据成为了一个关键问题。MySQL分区表作为一种有效的数据管理技术,能够将大型表划分为多个更小、更易管理的分区,从而提升数据库的性能和可...

MySQL基础篇:DQL数据查询操作_mysql 查

一、基础查询DQL基础查询语法SELECT字段列表FROM表名列表WHERE条件列表GROUPBY分组字段列表HAVING分组后条件列表ORDERBY排序字段列表LIMIT...

MySql:索引的基本使用_mysql索引的使用和原理

一、索引基础概念1.什么是索引?索引是数据库表的特殊数据结构(通常是B+树),用于...