百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT技术 > 正文

剑桥大学等研究发现:理论上稳定准确深度神经网络实际不存在

wptr33 2025-02-28 17:40 15 浏览

澎湃新闻记者 邵文

当下,深度神经网络应用越来越广泛,帮助设计微芯片,预测蛋白质折叠,并在复杂游戏中胜过人类,性能越来越强大。但也有大量证据证明,它们通常是不稳定的。一个非常明显的表现是,深度神经网络接收到的数据的微小变化,就可能会导致结果的巨大变化。

例如《One pixel attack for fooling deep neural networks》研究中所揭示的,改变图像上的一个像素,AI就把马识别成青蛙。哈佛医学院计算机科学家和生物医学信息学家Samuel Finlayson也曾发现,医学影像可以以人眼无法察觉的方式进行修改,然后导致人工智能100%地误诊癌症。

在以前的研究中,有数学证据表明,存在用于解决各种问题的稳定、准确的神经网络。然而最近剑桥大学和奥斯陆大学的研究人员发现,这些人工智能系统可能仅在有限的情况下是稳定和准确的。理论上存在的兼具稳定性和准确性的神经网络,可能无法准确描述现实中可能发生的事情。

“从理论上讲,神经网络的限制很少。”英国剑桥大学的数学家Matthew Colbrook 说。然而当试图计算这些神经网络时,问题就出现了。

“数字计算机只能计算某些特定的神经网络,”挪威奥斯陆大学的数学家Vegard Antun认为,“有时计算一个理想的神经网络是不可能的。”

这样的表述可能听起来令人困惑,《IEEE Spectrum》在谈论这项研究时以蛋糕做比喻,“好像有人说可能存在一种蛋糕,但不存在制作它的配方。”

“我们会说问题不在于配方。相反,问题在于制作蛋糕所必须的工具。”剑桥大学的数学家Anders Hansen说,“我们说可能有蛋糕的配方,但无论你有什么搅拌机,你都可能无法制作出想要的蛋糕。此外,当你尝试在厨房用搅拌机制作蛋糕时,你会得到一个完全不同的蛋糕。”

依此,继续进行类比,“甚至在你尝试之前无法判断蛋糕是否不正确,然后为时已晚。”Colbrook 说,“然而,在某些情况下,你的搅拌机足以制作你想要的蛋糕,或者至少可以很好地近似于该蛋糕。”

这些关于神经网络局限性的新发现与数学家Kurt G?del和计算机科学家Alan Turing关于计算局限性的先前研究相呼应。粗略地说,他们揭示了“有些数学陈述永远无法被证明或反驳,还有一些基本的计算问题是计算机无法解决的。”Antun表示。

此项研究以《计算稳定准确的神经网络的难点:关于深度学习的障碍和Smale的第18个问题》(The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem)为题,于3月16日发布在《美国国家科学院院刊》上。

在人工神经网络中,被称为“神经元”的组件被输入数据并协作解决问题,例如识别图像。神经网络反复调整各个神经元之间的联系,并查看由此产生的行为模式是否能更好地找到解决方案。随着时间推移,网络会发现哪些模式最适合计算结果。然后它采用这些作为默认值,模仿人脑中的学习过程。如果一个神经网络拥有多层神经元,它就被称为“深度”。

在以前的研究中,有数学证据表明,存在用于解决各种问题的稳定、准确的神经网络。然而,在这项新的研究中,研究人员现在发现,尽管理论上可能存在稳定、准确的神经网络来解决许多问题,但矛盾的是,实际上可能没有算法能够成功地计算它们。

这项新研究发现,无论算法可以访问多少数据或该数据的准确性,算法都可能无法针对给定问题计算出稳定、准确的神经网络。Hansen表示,这类似于图灵的论点,即无论计算能力和运行时间如何,计算机都可能无法解决一些问题。

“计算机可以实现的功能存在固有的限制,这些限制也会出现在AI中,”Colbrook 表示,“这意味着理论上存在的具有良好特性的神经网络,可能无法准确描述现实中可能发生的事情。”

这些新发现并不表明所有神经网络都存在完全缺陷,但它们可能仅在有限的情况下是稳定和准确的。“在某些情况下,可以计算出稳定且准确的神经网络,”Antun说道,“关键问题是‘在某些情况下’的部分,最大的问题是找到这些案例。目前,人们对如何做到这一点知之甚少。”

研究人员发现,神经网络的稳定性和准确性之间经常需要权衡。“问题是我们同时想要稳定性和准确性,”Hansen说道,“在实践中,对于安全相关的关键应用,人们可能不得不牺牲一些准确性来确保稳定性。”

作为新研究的一部分,研究人员开发了他们“快速迭代重启网络”(FIRENET),以期在涉及分析医学图像等任务时实现,神经网络可以提供稳定性和准确性的结果。

研究人员认为,这些关于神经网络局限性的新发现并不是为了抑制人工智能研究,“从长远来看,弄清楚什么可以做和什么不可以做什么对人工智能研究来说是健康的。请注意,图灵和G?del的负面结果引发了数学基础和计算机科学方面的巨大变化,这分别导致了现代计算机科学和现代逻辑的大部分发展。”Colbrook说,

具体而言在这项研究中,研究人员认为,这些新发现意味着存在一种分类理论,其可以描述哪些具有给定精度的稳定神经网络可以通过算法进行计算。用之前谈到的蛋糕类比,“这将是一个分类理论,描述了哪些蛋糕可以用物理上可能设计的搅拌机烘烤。如果无法烘烤蛋糕,我们也想知道与想要的蛋糕类型有多接近。”Antun 说道。

责任编辑:李跃群

校对:张亮亮

相关推荐

MySQL进阶五之自动读写分离mysql-proxy

自动读写分离目前,大量现网用户的业务场景中存在读多写少、业务负载无法预测等情况,在有大量读请求的应用场景下,单个实例可能无法承受读取压力,甚至会对业务产生影响。为了实现读取能力的弹性扩展,分担数据库压...

Postgres vs MySQL_vs2022连接mysql数据库

...

3分钟短文 | Laravel SQL筛选两个日期之间的记录,怎么写?

引言今天说一个细分的需求,在模型中,或者使用laravel提供的EloquentORM功能,构造查询语句时,返回位于两个指定的日期之间的条目。应该怎么写?本文通过几个例子,为大家梳理一下。学习时...

一文由浅入深带你完全掌握MySQL的锁机制原理与应用

本文将跟大家聊聊InnoDB的锁。本文比较长,包括一条SQL是如何加锁的,一些加锁规则、如何分析和解决死锁问题等内容,建议耐心读完,肯定对大家有帮助的。为什么需要加锁呢?...

验证Mysql中联合索引的最左匹配原则

后端面试中一定是必问mysql的,在以往的面试中好几个面试官都反馈我Mysql基础不行,今天来着重复习一下自己的弱点知识。在Mysql调优中索引优化又是非常重要的方法,不管公司的大小只要后端项目中用到...

MySQL索引解析(联合索引/最左前缀/覆盖索引/索引下推)

目录1.索引基础...

你会看 MySQL 的执行计划(EXPLAIN)吗?

SQL执行太慢怎么办?我们通常会使用EXPLAIN命令来查看SQL的执行计划,然后根据执行计划找出问题所在并进行优化。用法简介...

MySQL 从入门到精通(四)之索引结构

索引概述索引(index),是帮助MySQL高效获取数据的数据结构(有序),在数据之外,数据库系统还维护者满足特定查询算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构...

mysql总结——面试中最常问到的知识点

mysql作为开源数据库中的榜一大哥,一直是面试官们考察的重中之重。今天,我们来总结一下mysql的知识点,供大家复习参照,看完这些知识点,再加上一些边角细节,基本上能够应付大多mysql相关面试了(...

mysql总结——面试中最常问到的知识点(2)

首先我们回顾一下上篇内容,主要复习了索引,事务,锁,以及SQL优化的工具。本篇文章接着写后面的内容。性能优化索引优化,SQL中索引的相关优化主要有以下几个方面:最好是全匹配。如果是联合索引的话,遵循最...

MySQL基础全知全解!超详细无废话!轻松上手~

本期内容提醒:全篇2300+字,篇幅较长,可搭配饭菜一同“食”用,全篇无废话(除了这句),干货满满,可收藏供后期反复观看。注:MySQL中语法不区分大小写,本篇中...

深入剖析 MySQL 中的锁机制原理_mysql 锁详解

在互联网软件开发领域,MySQL作为一款广泛应用的关系型数据库管理系统,其锁机制在保障数据一致性和实现并发控制方面扮演着举足轻重的角色。对于互联网软件开发人员而言,深入理解MySQL的锁机制原理...

Java 与 MySQL 性能优化:MySQL分区表设计与性能优化全解析

引言在数据库管理领域,随着数据量的不断增长,如何高效地管理和操作数据成为了一个关键问题。MySQL分区表作为一种有效的数据管理技术,能够将大型表划分为多个更小、更易管理的分区,从而提升数据库的性能和可...

MySQL基础篇:DQL数据查询操作_mysql 查

一、基础查询DQL基础查询语法SELECT字段列表FROM表名列表WHERE条件列表GROUPBY分组字段列表HAVING分组后条件列表ORDERBY排序字段列表LIMIT...

MySql:索引的基本使用_mysql索引的使用和原理

一、索引基础概念1.什么是索引?索引是数据库表的特殊数据结构(通常是B+树),用于...