百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT技术 > 正文

MySQL千万级数据从190秒优化到1秒全过程

wptr33 2025-03-01 15:43 15 浏览

首先要声明的就是,千万级数据对于MySQL来说就是不太合理的一个存在。

优化MySQL千万级数据策略还是比较多的。

  • 分表分库
  • 创建中间表,汇总表
  • 修改为多个子查询

这里讨论的情况是在MySQL一张表的数据达到千万级别。表设计很烂,业务统计规则又不允许把sql拆成多个子查询。

在这样的情况下,开发者可以尝试通过优化SQL来达到查询的目的。

当MySQL一张表的数据达到千万级别,会出现一些特殊的情况。这里主要是讨论在比较极端的情况下SQL的优化策略。

先来个千万级数据

通过存储过程传递函数制造1000万条数据。

表结构如下:

CREATE TABLE `orders` (
  `order_id` int NOT NULL AUTO_INCREMENT,
  `user_id` int DEFAULT NULL,
  `order_date` date NOT NULL,
  `total_amount` decimal(10,2) NOT NULL,
  PRIMARY KEY (`order_id`),
  KEY `idx_user_id` (`user_id`) USING BTREE,
  KEY `idx_user_amount` (`user_id`,`total_amount`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci;

CREATE TABLE `users` (
  `user_id` int NOT NULL AUTO_INCREMENT,
  `username` varchar(50) COLLATE utf8mb4_general_ci NOT NULL,
  `email` varchar(100) COLLATE utf8mb4_general_ci NOT NULL,
  `created_at` timestamp NULL DEFAULT CURRENT_TIMESTAMP,
  PRIMARY KEY (`user_id`),
  KEY `idx_user_id` (`user_id`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci;

造数据的存储过程如下。

用户数据:

-- 产生用户存储过程,1000个
CREATE DEFINER=`root`@`localhost` PROCEDURE `create_users`()
BEGIN
    DECLARE i INT DEFAULT 0;
    DECLARE total_users INT DEFAULT 1000; -- 调整用户数量
    DECLARE rnd_username VARCHAR(50);
    DECLARE rnd_email VARCHAR(100);

    WHILE i < total_users DO
        -- 生成随机用户名和邮箱
        SET rnd_username = CONCAT('User', FLOOR(1 + RAND() * 10000000)); -- 假设用户名唯一
        SET rnd_email = CONCAT(rnd_username, '@example.com'); -- 假设邮箱唯一
        -- 将数据插入用户表
        INSERT INTO users (username, email) VALUES (rnd_username, rnd_email);

        SET i = i + 1;
    END WHILE;
END

订单数据生成存储过程如下:

CREATE DEFINER=`root`@`localhost` PROCEDURE `generate_orders`()
BEGIN
    DECLARE i INT DEFAULT 0;
    DECLARE total_users INT DEFAULT 1000; -- 用户数量
    DECLARE total_orders_per_user INT DEFAULT 1000; -- 每个用户的订单数量
    DECLARE rnd_user_id INT;
    DECLARE rnd_order_date DATE;
    DECLARE rnd_total_amount DECIMAL(10, 2);
    DECLARE j INT DEFAULT 0;

    WHILE i < total_users DO
        -- 获取用户ID
        SELECT user_id INTO rnd_user_id FROM users LIMIT i, 1;

        WHILE j < total_orders_per_user DO
            -- 生成订单日期和总金额
            SET rnd_order_date = DATE_ADD('2020-01-01', INTERVAL FLOOR(RAND() * 1096) DAY); -- 2020-01-01和2022-12-31之间的随机日期
            SET rnd_total_amount = ROUND(RAND() * 1000, 2); -- 0到1000之间的随机总金额
            -- 将数据插入订单表
            INSERT INTO orders (user_id, order_date, total_amount) VALUES (rnd_user_id, rnd_order_date, rnd_total_amount);

            SET j = j + 1;
        END WHILE;
        SET j = 0;

        SET i = i + 1;
    END WHILE;
END

将users和orders的数据生成分开,这样可以通过多次调用orders存储过程多线程参数数据。

调用一次call create_users(),然后开15个窗口调用orders存储过程call generate_orders()。

整个过程会产生1000个用户,15*1000*1000也就是1500万条订单数据。

原始SQL

这是一个很简单的sql,统计每个用户的订单总额。

在默认情况下,什么索引都没有创建,需要花费190+s的时间。

-- 第一个版本
SELECT a.*,sum(b.total_amount) as total from users a left join orders b  on a.user_id = b.user_id
group by a.user_id;

explain分析如下:

id select_type table partitions type possible_keys key key_len ref rows filtered Extra 1 SIMPLE a ALL PRIMARY 1000 100.0 Using temporary 1 SIMPLE b ALL 13016086 100.0 Using where; Using join buffer (hash join)

可以看到什么索引也没使用,type为all,直接全表扫描。

用时191s。

第一次优化:普通索引

把查询条件用到的sql条件都创建索引。也就是where和join、sum涉及到的知道。

CREATE INDEX idx_orders_user_id ON orders (user_id);
CREATE INDEX idx_orders_total_amount ON orders (total_amount);
CREATE INDEX idx_users_user_id ON users (user_id);

查询sql仍然是第一个版本。

-- 第一个版本
SELECT a.*,sum(b.total_amount) as total from users a left join orders b  on a.user_id = b.user_id
group by a.user_id;

先看看expalin的结果:

id select_type table partitions type possible_keys key key_len ref rows filtered Extra 1 SIMPLE a index PRIMARY,idx_users_user_id PRIMARY 4 1 100.0 1 SIMPLE b ref idx_orders_user_id idx_orders_user_id 5 test2.a.user_id 13003 100.0

type为index或者ref,全部走的索引。

查询结果却让人失望,这次用的时间更多,用了460+s。也就是说查询变慢了。

推测是由于mysql的回表机制导致查询变得更慢了。所以接下来继续优化索引。

第二次优化:覆盖索引

覆盖索引是指一个索引包含了查询所需的所有列,从而可以满足查询的要求,而不需要访问实际的数据行。

通常情况下,数据库查询需要根据索引定位到对应的数据行,然后再从数据行中获取所需的列值。

而当索引中包含了查询所需的所有列时,数据库引擎可以直接通过索引就能够满足查询的要求,无需访问实际的数据行,这样就可以提高查询性能。

这也是普通索引添加了还是查询慢的原因,因为普通索引命中了还是会去找主键,通过主键找到关联字段的值做过滤。

-- 先不删除普通索引
-- drop INDEX idx_orders_user_id ON orders;
-- drop INDEX idx_orders_total_amount ON orders;
CREATE INDEX idx_orders_total_amount_user_id ON orders (total_amount,user_id);
CREATE INDEX idx_orders_user_id_total_amount ON orders (user_id,total_amount);

1500万数据创建索引就花费了300+s。所以创建索引得适度。

查询sql还是第一个版本。

-- 第一个版本
SELECT a.*,sum(b.total_amount) as total from users a left join orders b  on a.user_id = b.user_id
group by a.user_id;

先看看expalin的结果:

id select_type table partitions type possible_keys key key_len ref rows filtered Extra 1 SIMPLE a index PRIMARY,idx_users_user_id PRIMARY 4 1 100.0 1 SIMPLE b ref idx_orders_user_id,idx_orders_user_id_total_amount idx_orders_user_id_total_amount 5 test2.a.user_id 874 100.0 Using index

可以看到orders表的type从index提升到了ref。

此时的查询时间为从460s+降低到10s了。

结果证明覆盖索引能提升查询速度。

问题就在于这次建的两个覆盖索引,只有
idx_orders_user_id_total_amount 降低了查询时间,而
idx_orders_total_amount_user_id没有。

这个和mysql的关键词执行顺序有一定关系(推测,没找到资料)。

mysql执行顺序如下:

from
on
join
where
group by
having
select
distinct
union (all)
order by
limit

可以看到在覆盖索引使用过程先是where,再是到select的sum函数。这也是
idx_orders_user_id_total_amount 索引的创建顺序。

drop INDEX idx_orders_user_id ON orders;
drop INDEX idx_orders_total_amount ON orders;
drop INDEX idx_orders_total_amount_user_id ON orders;

drop掉相关的多余索引可以发现执行查询时间没有变化,仍然为10s。

索引优化这块差不多就是通过覆盖索引来命中索引。

第三次优化:减少数据量

减少数据量在业务上来说就是移除不必要的数据,或者可以在架构设计这块做一些工作。

分表就是这个原则。

通过这个方式能把千万的数据量减少到百万甚至几十万的量。提升的查询速度是可以想象的。

-- 第三次优化:减少数据量
SELECT a.*,sum(b.total_amount) as total from users a left join orders b  on a.user_id = b.user_id
where a.user_id > 1033
group by a.user_id;

expain结果如下:

id select_type table partitions type possible_keys key key_len ref rows filtered Extra 1 SIMPLE a range PRIMARY,idx_users_user_id PRIMARY 4 685 100.0 Using where 1 SIMPLE b ref idx_orders_user_id_total_amount idx_orders_user_id_total_amount 5 test2.a.user_id 874 100.0 Using index

可以看到users表的type为range。能过滤一部分数据量。

查询时间从10s降低到7s,减少数据量证明有效。

第四次优化:小表驱动大表

在 MySQL 中,通常情况下,优化器会根据查询条件和表的大小选择合适的驱动表(即主导表)。

小表驱动大表是一种优化策略,它指的是在连接查询中,优先选择小表作为驱动表,以减少连接操作所需的内存和处理时间。

在第三次优化的结果上,可以尝试使用小表驱动大表优化策略。

-- 第三个版本,小标驱动大表  没啥效果
SELECT a.*,sum(b.total_amount) as total from users a
left join (select user_id,total_amount from orders c where c.user_id > 1033 ) b  on a.user_id = b.user_id
where a.user_id > 1033
group by a.user_id;

将left join的表修改为子查询,能提前过滤一部分数据量。

expain结果如下:

id select_type table partitions type possible_keys key key_len ref rows filtered Extra 1 SIMPLE a range PRIMARY,idx_users_user_id PRIMARY 4 685 100.0 Using where 1 SIMPLE c ref idx_orders_user_id_total_amount idx_orders_user_id_total_amount 5 test2.a.user_id 874 100.0 Using where; Using index

可以看到explain没什么变化。实际执行效果也没啥变化。

小表驱动大表在这里无效,但是可以结合具体的业务进行优化sql。这个策略是没问题的。

第五次优化:强制索引

当 MySQL 中的 IN 子句用于查询千万级数据时,如果未正确设计和使用索引,可能导致索引失效,从而影响查询性能。

通常情况下,MySQL 的优化器会根据查询条件选择最优的执行计划,包括选择合适的索引。然而,对于大数据量的 IN 子句查询,MySQL 可能无法有效使用索引,从而导致全表扫描或索引失效。

查询sql如下,由于in的数据量不是很稀疏,实际查询强制索引和普通索引效果一致

-- 第五个版本,强制索引 
SELECT a.*,sum(b.total_amount) as total from users a left join orders b force index (idx_orders_user_id_total_amount)  on a.user_id = b.user_id
where b.user_id in (1033,1034,1035,1036,1037,1038)
group by a.user_id;
-- 第五个版本,不走强制索引 
SELECT a.*,sum(b.total_amount) as total from users a left join orders b  on a.user_id = b.user_id
where b.user_id in (1033,1034,1035,1036,1037,1038)
group by a.user_id;

查询时间都是零点几秒。

笔者在实际业务中是遇到过这种场景的,业务sql更加复杂。这里由于临时创建的订单用户表没复现。

当你发现explain都是命中索引的,但是查询依然很慢。这个强制索引可以试试。

优化策略

  • 提前命中索引,小表驱动大表
  • 千万级数据in索引失效,进行强制索引
  • 使用覆盖索引解决回表问题

下次该怎么优化SQL

  • 数据接近千万级,需要分表,比如按照用户id取模分表。
  • 用汇总表代替子查询来命中索引,比如把小时表生成日表、月表汇总数据。
  • 关联字段冗余、直接放到一张表就是单表查询了。
  • 命中索引,空间换时间,这也是本文分析的场景。

关于命中索引核心点就是覆盖索引,再者是千万数据产生的特有场景需要走强制索引。

tips

explain结果type的含义

在 MySQL 的 EXPLAIN 查询结果中,type 字段表示了查询使用的访问类型,即查询执行过程中的访问方法。

根据不同的访问类型,MySQL 查询优化器将选择不同的执行计划。以下是 type 字段可能的取值及其含义:

  • system: 这是最好的情况,表示查询只返回一行结果。这通常是通过直接访问表的 PRIMARY KEY 或唯一索引来完成的。
  • const: 表示 MySQL 在查询中找到了常量值,这是在连接的第一个表中进行的。由于这是常量条件,MySQL 只会读取一次表中的一行数据。例如,通过主键访问一行数据。
  • eq_ref: 类似于 const,但在使用了索引的情况下。此类型的查询是通过某个唯一索引来访问表的,对于每个索引键值,表中只有一行匹配。常见于使用主键或唯一索引进行连接操作。
  • ref: 表示此查询使用了非唯一索引来查找值。返回的是所有匹配某个单独值的行。该类型一般出现在联接操作中,使用了非唯一索引或者索引前缀。
  • range: 表示查询使用了索引来进行范围检索,通常出现在带有范围条件的查询语句中,例如 BETWEEN、IN()、>、<等。
  • index: 表示 MySQL 将扫描整个索引来找到所需的行。这通常是在没有合适的索引的情况下,MySQL 会选择使用这种访问类型。
  • all: 表示 MySQL 将扫描全表以找到所需的行,这是最差的情况。这种情况下,MySQL 将对表中的每一行执行完整的扫描。

通常来说,type 字段的排序从最好到最差依次是 system、const、eq_ref、ref、range、index、all,当然,实际情况取决于查询的具体情况、表结构和索引的使用情况。更好的查询性能通常对应着更好的 type 类型。

mysql的回表机制

在 MySQL 中,回表("ref" or "Bookmark Lookup" in English)是指在使用索引进行查询时,MySQL 首先通过索引找到满足条件的行的位置,然后再回到主表(或称为数据表)中查找完整的行数据的过程。

这个过程通常发生在某些查询中,特别是涉及到覆盖索引无法满足查询需求时。

当一个查询不能完全通过索引满足时,MySQL 就需要回到主表中查找更多的信息。这种情况通常出现在以下几种情况下:

  • 非覆盖索引查询: 如果查询需要返回主表中未包含在索引中的其他列的数据时,MySQL 就需要回到主表中查找这些额外的列数据。
  • 使用索引范围条件: 当查询中使用了范围条件(例如 BETWEEN、>、< 等),而索引只能定位到范围起始位置时,MySQL 需要回到主表中检查满足范围条件的完整行。
  • 使用了聚簇索引但需要查找的列不在索引中: 在使用了聚簇索引的表中,如果需要查询的列不在聚簇索引中,MySQL 需要回到主表中查找这些列的数据。

当 MySQL 需要执行回表操作时,会发生额外的磁盘访问,因为需要读取主表中的数据。这可能会导致性能下降,特别是在大型数据表中或者在高并发环境中。

为了尽量减少回表操作的发生,可以考虑以下几点:

  • 创建覆盖索引:确保查询所需的所有列都包含在索引中,从而避免回表操作。
  • 优化查询语句:尽量避免使用范围条件,或者确保所有的过滤条件都可以被索引完全匹配。
  • 考虑表设计:在设计数据库表结构时,可以考虑将常用的查询字段都包含在索引中,以减少回表操作的发生。

关于作者

来自一线全栈程序员nine的探索与实践,持续迭代中。

欢迎关注或者点个小红心~

相关推荐

MySQL进阶五之自动读写分离mysql-proxy

自动读写分离目前,大量现网用户的业务场景中存在读多写少、业务负载无法预测等情况,在有大量读请求的应用场景下,单个实例可能无法承受读取压力,甚至会对业务产生影响。为了实现读取能力的弹性扩展,分担数据库压...

Postgres vs MySQL_vs2022连接mysql数据库

...

3分钟短文 | Laravel SQL筛选两个日期之间的记录,怎么写?

引言今天说一个细分的需求,在模型中,或者使用laravel提供的EloquentORM功能,构造查询语句时,返回位于两个指定的日期之间的条目。应该怎么写?本文通过几个例子,为大家梳理一下。学习时...

一文由浅入深带你完全掌握MySQL的锁机制原理与应用

本文将跟大家聊聊InnoDB的锁。本文比较长,包括一条SQL是如何加锁的,一些加锁规则、如何分析和解决死锁问题等内容,建议耐心读完,肯定对大家有帮助的。为什么需要加锁呢?...

验证Mysql中联合索引的最左匹配原则

后端面试中一定是必问mysql的,在以往的面试中好几个面试官都反馈我Mysql基础不行,今天来着重复习一下自己的弱点知识。在Mysql调优中索引优化又是非常重要的方法,不管公司的大小只要后端项目中用到...

MySQL索引解析(联合索引/最左前缀/覆盖索引/索引下推)

目录1.索引基础...

你会看 MySQL 的执行计划(EXPLAIN)吗?

SQL执行太慢怎么办?我们通常会使用EXPLAIN命令来查看SQL的执行计划,然后根据执行计划找出问题所在并进行优化。用法简介...

MySQL 从入门到精通(四)之索引结构

索引概述索引(index),是帮助MySQL高效获取数据的数据结构(有序),在数据之外,数据库系统还维护者满足特定查询算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构...

mysql总结——面试中最常问到的知识点

mysql作为开源数据库中的榜一大哥,一直是面试官们考察的重中之重。今天,我们来总结一下mysql的知识点,供大家复习参照,看完这些知识点,再加上一些边角细节,基本上能够应付大多mysql相关面试了(...

mysql总结——面试中最常问到的知识点(2)

首先我们回顾一下上篇内容,主要复习了索引,事务,锁,以及SQL优化的工具。本篇文章接着写后面的内容。性能优化索引优化,SQL中索引的相关优化主要有以下几个方面:最好是全匹配。如果是联合索引的话,遵循最...

MySQL基础全知全解!超详细无废话!轻松上手~

本期内容提醒:全篇2300+字,篇幅较长,可搭配饭菜一同“食”用,全篇无废话(除了这句),干货满满,可收藏供后期反复观看。注:MySQL中语法不区分大小写,本篇中...

深入剖析 MySQL 中的锁机制原理_mysql 锁详解

在互联网软件开发领域,MySQL作为一款广泛应用的关系型数据库管理系统,其锁机制在保障数据一致性和实现并发控制方面扮演着举足轻重的角色。对于互联网软件开发人员而言,深入理解MySQL的锁机制原理...

Java 与 MySQL 性能优化:MySQL分区表设计与性能优化全解析

引言在数据库管理领域,随着数据量的不断增长,如何高效地管理和操作数据成为了一个关键问题。MySQL分区表作为一种有效的数据管理技术,能够将大型表划分为多个更小、更易管理的分区,从而提升数据库的性能和可...

MySQL基础篇:DQL数据查询操作_mysql 查

一、基础查询DQL基础查询语法SELECT字段列表FROM表名列表WHERE条件列表GROUPBY分组字段列表HAVING分组后条件列表ORDERBY排序字段列表LIMIT...

MySql:索引的基本使用_mysql索引的使用和原理

一、索引基础概念1.什么是索引?索引是数据库表的特殊数据结构(通常是B+树),用于...