百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT技术 > 正文

Python随机模块22个函数详解(python 随机模块)

wptr33 2025-03-25 18:07 9 浏览

随机数可以用于数学,游戏,安全等领域中,还经常被嵌入到算法中,用以提高算法效率,并提高程序的安全性。平时数据分析各种分布的数据构造也会用到。

random模块,用于生成伪随机数,之所以称之为伪随机数,是因为真正意义上的随机数(或者随机事件)在某次产生过程中是按照实验过程中表现的分布概率随机产生的,其结果是不可预测的,是不可见的。而计算机中的随机函数是按照一定算法模拟产生的,对于正常随机而言,会出现某个事情出现多次的情况。

但是伪随机,在事情触发前设定好,就是这个十个事件各发生一次,只不过顺序不同而已。现在MP3的随机列表就是用的伪随机,把要播放的歌曲打乱顺序,生成一个随机列表而已,每个歌曲都播放一次。真实随机的话,会有出现某首歌多放次的情况,歌曲基数越多,重放的概率越大。

注意:random()是不能直接访问的,需要导入 random 模块,然后通过 random 静态对象调用该方法。


#加载所需要的包
import random 
import matplotlib.pyplot as plt
import seaborn as sns


#加载所需要的包
import random 
import matplotlib.pyplot as plt
import seaborn as sns

01 random

描述:random.random() 用于生成一个0到1的随机符点数: 0 <= n < 1.0

语法:random.random()

L = [0,1,2,3,4,5]
random.choice(L)
2


L = 'wofeichangshuai'
random.choice(L)
'h'

02 choice

描述:从非空序列seq中随机选取一个元素。如果seq为空则弹出 IndexError异常。

语法:random.choice( seq)seq 可以是一个列表,元组或字符串。

L = [0,1,2,3,4,5]
random.choice(L)
2


L = 'wofeichangshuai'
random.choice(L)
'h'

03 choices

描述:从集群中随机选取k次数据,返回一个列表,可以设置权重。

注意每次选取都不会影响原序列,每一次选取都是基于原序列。

语法:random.choices(population,weights=None,*,cum_weights=None,k=1)

参数:

  • population:集群。
  • weights:相对权重。
  • cum_weights:累加权重。
  • k:选取次数。
random.getrandbits(10)
379

04 getrandbits

描述:返回一个不大于K位的Python整数(十进制),比如k=10,则结果在0~2^10之间的整数。

语法:random.getrandbits(k)

random.getrandbits(10)
379

05 getstate

描述:返回一个捕获到的 生成器当前内部状态 的对象,可以将此对象传递给 setstate() 以恢复到这个状态。

语法:random.getstate()

06 setstate

描述:state 应该是从之前调用 getstate() 获得的,而 setstate() 将生成器的内部状态恢复到调用 getstate() 时的状态。根据下面的例子可以看出,由于生成器内部状态相同时会生成相同的下一个随机数,我们可以使用 getstate() 和 setstate() 对生成器内部状态进行获取和重置到某一状态下。

语法:random.setstate(state)

state = random.getstate()random.random()0.489148634943random.random()0.22359638172661822random.setstate(state)random.random()0.48914863494

07 randint

描述:用于生成一个指定范围内的整数。

语法:random.randint(a, b),其中参数a是下限,参数b是上限,生成的随机数n: a <= n <= b

random.randint(1, 8)3random.randint(1, 8)4

08 randrange

描述:按指定基数递增的集合中 获取一个随机数。如:random.randrange(10, 100, 2),结果相当于从[10, 12, 14, 16, … 96, 98]序列中获取一个随机数,random.randrange(10, 100, 2)在结果上与 random.choice(range(10, 100, 2) 等效。

语法:random.randrange([start], stop[, step])

  • 不指定step,随机生成[a,b)范围内一个整数。
  • 指定step,step作为步长会进一步限制[a,b)的范围,比如randrange(0,11,2)意即生成[0,11)范围内的随机偶数。
  • 不指定a,则默认从0开始。
#不限制[random.randrange(0,11) for i in range(5)][4, 6, 3, 9, 5]#随机偶数,运行5个数[random.randrange(0,11,2) for i in range(5)][2, 4, 8, 8, 6]

09 sample

描述:从population样本或集合中随机抽取K个不重复的元素形成新的序列。常用于不重复的随机抽样。返回的是一个新的序列,不会破坏原有序列。要从一个整数区间随机抽取一定数量的整数,请使用sample(range(1000000), k=60)类似的方法,这非常有效和节省空间。如果k大于population的长度,则弹出ValueError异常。

语法:random.sample(population, k)

注意:与random.choices()的区别:一个是选取k次,一个是选取k个,选取k次的相当于选取后又放回,选取k个则选取后不放回。故random.sample()的k值不能超出集群的元素个数。

random.sample(range(1000), k=5)[82, 678, 664, 177, 376]L = [0,1,2,3,4,5]random.sample(L,3)[5, 3, 1]random.sample(L,3)[2, 4, 5]

10 seed

描述:初始化伪随机数生成器。如果未提供a或者a=None,则使用系统时间为种子。如果a是一个整数,则作为种子。伪随机数生成模块。如果不提供 seed,默认使用系统时间。使用相同的 seed,可以获得完全相同的随机数序列,常用于算法改进测试。

语法:random.seed(a=None, version=2)

a = random.Random()a.seed(1)[a.randint(1, 100) for i in range(20)][14, 85, 77, 26, 50, 45, 66, 79, 10, 3, 84, 44, 77, 1, 45, 73, 23, 95, 91, 4]b =random.Random()b.seed(1)[b.randint(1, 100) for i in range(20)][14, 85, 77, 26, 50, 45, 66, 79, 10, 3, 84, 44, 77, 1, 45, 73, 23, 95, 91, 4]

11 shuffle

描述:用于将一个列表中的元素打乱。只能针对可变的序列,对于不可变序列,请使用下面的sample()方法。

语法:random.shuffle(x)

L = [0,1,2,3,4,5]random.shuffle(L)L[5, 4, 1, 0, 3, 2]

12 uniform

描述:产生[a,b]范围内一个随机浮点数。uniform()的a,b参数不需要遵循a<=b的规则,即a小b大也可以,此时生成[b,a]范围内的随机浮点数。

语法:random.uniform(x, y)

random.uniform(10, 11)10.789198208817488

13 vonmisesvariate

描述:卡帕分布

语法:vonmisesvariate(mu, kappa)

data = [random.vonmisesvariate(2,2) for i in range(20000)]
#直方图
plt.hist(data, bins=100,  color="#FF0000", alpha=.7)
#密度图
sns.kdeplot(data, shade=True,color="#FF0000")

直方图

密度图

14 triangular

描述:返回一个low <= N <=high的三角形分布的随机数。参数mode指明众数出现位置。

语法: random.triangular(low, high, mode)

data = [random.vonmisesvariate(2,2) for i in range(20000)]#直方图plt.hist(data, bins=100,  color="#FF0000", alpha=.7)#密度图sns.kdeplot(data, shade=True,color="#FF0000")

直方图

密度图无法显示


15 weibullvariate

描述:威布尔分布

语法:random.weibullvariate(alpha, beta)

data = [random.weibullvariate(1,2) for i in range(20000)]#直方图plt.hist(data, bins=100,  color="#FF0000", alpha=.7)sns.kdeplot(data, shade=True,color="#FF0000")

直方图

密度图

16 betavariate

描述: β分布

语法:random.betavariate(alpha, beta)

data = [random.expovariate(2) for i in range(50000)]
#直方图
plt.hist(data, bins=100,  color="#FF0000", alpha=.7)
#密度图
sns.kdeplot(data, shade=True,color="#FF0000")

直方图

密度图

17 expovariate

描述:指数分布

语法:random.expovariate(lambd)

data = [random.expovariate(2) for i in range(50000)]
#直方图
plt.hist(data, bins=100,  color="#FF0000", alpha=.7)
#密度图
sns.kdeplot(data, shade=True,color="#FF0000")

直方图

密度图


18 gammavariate

描述: 伽马分布

语法:random.gammavariate(alpha, beta)

data = [random.gauss(2,2) for i in range(50000)]
#直方图
plt.hist(data, bins=100,  color="#FF0000", alpha=.7)
#密度图
sns.kdeplot(data, shade=True,color="#FF0000")

直方图

密度图

19 gauss

描述:高斯分布

语法:random.gauss(mu, sigma)

data = [random.gauss(2,2) for i in range(50000)]
#直方图
plt.hist(data, bins=100,  color="#FF0000", alpha=.7)
#密度图
sns.kdeplot(data, shade=True,color="#FF0000")

直方图

密度图

20 lognormvariate

描述:对数正态分布

语法:random.lognormvariate(mu, sigma)

示例:

data = [random.gauss(2,2) for i in range(50000)]#直方图plt.hist(data, bins=100,  color="#FF0000", alpha=.7)#密度图sns.kdeplot(data, shade=True,color="#FF0000")

直方图

密度图

21 normalvariate

描述: 正态分布

语法:random.normalvariate(mu, sigma)

data = [random.normalvariate(2,4) for i in range(20000)]
#直方图
plt.hist(data, bins=100,  color="#FF0000", alpha=.7)
#密度图
sns.kdeplot(data, shade=True,color="#FF0000")

直方图

密度图

22 paretovariate

描述:帕累托分布

语法:random.paretovariate(alpha)

data = [random.paretovariate(4) for i in range(50000)]
#直方图
plt.hist(data, bins=100,  color="#FF0000", alpha=.7)
#密度图
sns.kdeplot(data, shade=True,color="#FF0000")

直方图

密度图


相关推荐

每天一个AI姬,AMD核显用户有福了,AI绘画打破 NVIDIA 显卡垄断

使用StableDiffusion进行AI绘画,并不一定只能使用NVIDIA英伟达显卡,甚至,也不一定只能使用独立显卡。今天我们使用AMD6800H核显,并安装了StableDif...

NETworkManager:功能强大的网络管理与问题排除工具

关于NETworkManagerNETworkManager是一款功能强大的网络管理与问题排除工具,该工具完全开源,可以帮助广大研究人员轻松管理目标网络系统并排除网络疑难问题。该工具使用远程桌面、Po...

AMD也能深度学习+免费AI绘画:StableDiffusion+ROCm部署教程!

某国政客扇扇嘴皮子,CN玩硬件和深度学习的圈子里就掀起了一场风暴,这就是著名的嘴皮子效应(误)。没了高性能计算的A100H100倒也能理解,但是美利坚这波把RTX4090禁售了就让人无语了,所以不少做...

windows 下编译 python_rtmpstream

最近在研究数字人,看了大咖的项目(https://github.com/lipku/metahuman-stream),尝试编译此项目的依赖项目python_rtmpstream(https://gi...

如何使用 Python 操作 Git 代码?GitPython 入门介绍

花下猫语:今天,我在查阅如何用Python操作Gitlab的时候,看到这篇文章,觉得还不错,特分享给大家。文中还提到了其它几种操作Git的方法,后续有机会的话,再陆续分享之~~作者:匿蟒...

网上看了不少,终于把ZlmediaKit流媒体框架搭建起来啦

你都站在2023年代了,视频通话、视频直播、视频会议、视频监控就是风口浪尖上的猪师兄,只要你学那么一丁点,拿个高薪的工作不过分吧!我也是半瓶子晃荡的,所以路人呀,共学习,同进步!本篇开始,只讲在Lin...

MacDown:一款 macOS 的强大 Markdown 编辑器

大家好,很高兴又见面了,我是"...

ZLMediaKit安装配置和推拉流

一、ZLMediaKit库简介ZLMediaKit是一个基于...

大神赞过的:学习 WebAssembly 汇编语言程序设计

文/阿里淘系F(x)Team-旭伦随着前端页面变得越来越复杂,javascript的性能问题一再被诟病。而Javascript设计时就不是为了性能优化设计的,这使得浏览器上可以运行的本地语言一...

【Docker】部署WVP视频监控平台

回来Docker系列,今天将会跟大家分享一则关于开源WVP视频监控平台的搭建。先说结论吧,一开始按照网上说的一步一步搭建没有搭建成功,不知道是版本太旧还是我这边机器有问题,尝试了好几个不同方式的搭建都...

MongoDB+GridFS存储文件方案

GridFS是MongoDB的一个内置功能,它提供一组文件操作的API以利用MongoDB存储文件,GridFS的基本原理是将文件保存在两个Collection中,一个保存文件索引,一个保存文...

【开源】强大、创新且直观的 EDA套件

今天分享的LibrePCB是...

Ollama如何制作自己的大模型?

背景Llama3发布了,这次用了...

Ollama使用指南【超全版】

一、Ollama快速入门Ollama是一个用于在本地运行大型语言模型的工具,下面将介绍如何在不同操作系统上安装和使用Ollama。官网:https://ollama.comGithub:http...

基于区块链的价值共享互联网即时通讯应用平台源码免费分享

——————关注转发之后私信回复【源码】即可免费获取到本项目所有源码基于区块链的价值共享互联网即时通讯应用平台,是一个去中心化的任何人都可以使用的通讯网络,是一款基于区块链的价值共享互联网即时通讯AP...