百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT技术 > 正文

数组-一文搞定前缀和数组(双数组前缀树)

wptr33 2025-03-29 23:04 18 浏览

前言

就从数组开始,以后会一直更新算法。数组有下图这些知识点与技巧。本文主要讲解其中的前缀和知识点。

思路

适合的场景:原始数组不会被修改,且频繁查询某个区间的累加和。 创建一个prefixSum数组,长度比原数组nums长度多1。prefixSum[i]存储nums[0]到nums[i]的和。 尤其要注意prefixSum与nums的坐标换算,如下图所示。

区域和检索 - 数组不可变(一维前缀和)

leetcode第303题

解题思路
常规思路是通过遍历i到j。但这样时间复杂度就是O(n)。 采用前缀和。
sumRange = prefixSum[right + 1] - prefixSum[left]。注意原数组与前缀和数组的下标换算,例如nums[i]的前缀和是preSum[i + 1]。如下图所示。

复杂度分析
时间复杂度:初始化O(n),每次检索O(1),n是数组长度。 空间复杂度:O(n)。
代码

class NumArray {
    private int[] prefixSum;
    public NumArray(int[] nums) {
        prefixSum = new int[nums.length + 1];
        for (int i = 0; i < nums.length; i++) {
            prefixSum[i + 1] = prefixSum[i] + nums[i];
        }
    }
    public int sumRange(int left, int right) {
        return prefixSum[right + 1] - prefixSum[left];
    }
}

二维区域和检索 - 矩阵不可变(二维前缀和)

leetcode第304题

解题思路
题中要求值设为下图中的红框部分,则有下图红框部分和 = 下图蓝框部分的和 - 下图绿框部分的和 - 下图黄框部分的和 + 下图灰框部分的和。

image.png

定义原二维数组的前缀和数组为preSum。则preSum[i][j]表示原数组中(0, 0)坐标与(i - 1, j - 1)坐标组成的矩形区域的和,如下图所示,紫色框对应的前缀和为17。 这里需要注意原数组与前缀和数组的坐标换算。比如原数组坐标为(i - 1, j - 1),则在前缀和数组中的坐标为(i, j)。 而上面一开始提到的蓝框的和,绿框的和,黄框的和,灰框的和的求法都一样。也就是对应位置二维数组的前缀和。

所以上图中紫色部分前缀和又如何求呢?答案:上图紫色部分前缀和 = 下图黄色部分前缀和 + 下图红色部分前缀和 - 重叠部分前缀和 + 原数组(i - 1, j - 1)位置的值 ,即preSum[i][j] = preSum[i - 1][j] + preSum[i][j - 1] - preSum[i - 1][j - 1] + matrix[i - 1][j - 1] = 9 + 14 - 8 + 2 = 17

所以只要求出原数组中每个位置的前缀和,就解决了本题。 复杂度分析
时间复杂度:初始化O(rc),每次检索O(1),其中r与c分别为matrix的行数和列数。 空间复杂度:O(rc)。
代码

class NumMatrix {
    private int[][] preSum;

    public NumMatrix(int[][] matrix) {
        int r = matrix.length;
        if (r == 0) {
            return;
        }
        int c = matrix[0].length;
        if (c == 0) {
            return;
        }
        preSum = new int[r + 1][c + 1];
        for (int i = 1; i <= r; i++) {
            for (int j = 1; j <= c; j++) {
                preSum[i][j] = preSum[i - 1][j] + preSum[i][j - 1] - preSum[i - 1][j - 1] + matrix[i - 1][j - 1];
            }
        }
    }

    public int sumRegion(int row1, int col1, int row2, int col2) {
        return preSum[row2 + 1][col2 + 1] - preSum[row1][col2 + 1] - preSum[row2 + 1][col1] + preSum[row1][col1];
    }
}

和为 K 的子数组

leetcode第560题

解题思路
思路
常规思路是通过双重循环遍历前缀和数组,j < i,若当
preSum[j] + k == preSum[i]时,说明数组从j - 1到i的和为k,则count++。但这样时间复杂度就是O(n^2)。 采用HashMap + 前缀和数组方式,时间复杂度可达到O(n)。 由preSum[j] + k == preSum[i]移项得preSum[j] == preSum[i] - k。所以只要统计有多少个前缀和为preSum[i] - k即可以统计出有多少个子串的和为k。 建立map,其中key=preSum[i],value=满足preSum[i] - k的preSum[j]有多少个(有多少个满足,就代表有多少个子串的和为k),其中必须j < i。
示例
示例nums = [1,2,3],k = 3。流程如下。 1.由于不会事先构建前缀和数组,所以此处先添加前缀和的第0个元素。如下图所示。

2.从nums的第0项(对应前缀和数组的第1项),开始遍历。此时preSum - k = -2。map中不存在key = -2的键值对。所以此时count = 0。并将key = preSum = 1, value = 1加入map。如下图所示。

3.访问nums数组的第1项(对应前缀和数组的第2项)。此时preSum - k = 0。map中存在key =0的键值对,且value = 1。所以此时count = count + value = 1。并将key = preSum = 3, value = 1加入map。如下图所示。

4.访问nums数组的第2项(对应前缀和数组的第3项)。此时preSum - k = 3。map中存在key = 3的键值对,且value = 1。所以此时count = count + value = 2。并将key = preSum = 6, value = 1加入map。如下图所示。

复杂度分析
时间复杂度:O(n),其中n为数组的长度 空间复杂度:O(n),哈希表在最坏情况下可能有n个不同的键值,因此为O(n)。
代码

class Solution {
   public int subarraySum3(int[] nums, int k) {
      HashMap map = new HashMap<>();
      //初始情况,由于此处没有使用前缀和数组,因此需要先将前缀和为0的,出现了1次的的情况记录在map里面,也就是前缀数组中的第0项
      map.put(0, 1);
      int count = 0, sum0i = 0;
      for (int i = 0; i < nums.length; i++) {
         sum0i += nums[i];
         count += map.getOrDefault(sum0i - k, 0);
         //以下两句代码,必须在以上两句代码的后边,这样变相保证了j < i
         int c = map.getOrDefault(sum0i, 0);
         map.put(sum0i, ++c);
      }
      return count;
   }
}

结尾

好了数组中的前缀和技巧就讲这三道。下一篇算法文章讲差分数组。

微信扫描下方二维码,关注公众号后回复【笔记】,有我准备的15万字Java面试笔记。

感谢各位人才的点赞、收藏和评论,干货文章持续更新中,下篇文章再见!

相关推荐

MySQL进阶五之自动读写分离mysql-proxy

自动读写分离目前,大量现网用户的业务场景中存在读多写少、业务负载无法预测等情况,在有大量读请求的应用场景下,单个实例可能无法承受读取压力,甚至会对业务产生影响。为了实现读取能力的弹性扩展,分担数据库压...

Postgres vs MySQL_vs2022连接mysql数据库

...

3分钟短文 | Laravel SQL筛选两个日期之间的记录,怎么写?

引言今天说一个细分的需求,在模型中,或者使用laravel提供的EloquentORM功能,构造查询语句时,返回位于两个指定的日期之间的条目。应该怎么写?本文通过几个例子,为大家梳理一下。学习时...

一文由浅入深带你完全掌握MySQL的锁机制原理与应用

本文将跟大家聊聊InnoDB的锁。本文比较长,包括一条SQL是如何加锁的,一些加锁规则、如何分析和解决死锁问题等内容,建议耐心读完,肯定对大家有帮助的。为什么需要加锁呢?...

验证Mysql中联合索引的最左匹配原则

后端面试中一定是必问mysql的,在以往的面试中好几个面试官都反馈我Mysql基础不行,今天来着重复习一下自己的弱点知识。在Mysql调优中索引优化又是非常重要的方法,不管公司的大小只要后端项目中用到...

MySQL索引解析(联合索引/最左前缀/覆盖索引/索引下推)

目录1.索引基础...

你会看 MySQL 的执行计划(EXPLAIN)吗?

SQL执行太慢怎么办?我们通常会使用EXPLAIN命令来查看SQL的执行计划,然后根据执行计划找出问题所在并进行优化。用法简介...

MySQL 从入门到精通(四)之索引结构

索引概述索引(index),是帮助MySQL高效获取数据的数据结构(有序),在数据之外,数据库系统还维护者满足特定查询算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构...

mysql总结——面试中最常问到的知识点

mysql作为开源数据库中的榜一大哥,一直是面试官们考察的重中之重。今天,我们来总结一下mysql的知识点,供大家复习参照,看完这些知识点,再加上一些边角细节,基本上能够应付大多mysql相关面试了(...

mysql总结——面试中最常问到的知识点(2)

首先我们回顾一下上篇内容,主要复习了索引,事务,锁,以及SQL优化的工具。本篇文章接着写后面的内容。性能优化索引优化,SQL中索引的相关优化主要有以下几个方面:最好是全匹配。如果是联合索引的话,遵循最...

MySQL基础全知全解!超详细无废话!轻松上手~

本期内容提醒:全篇2300+字,篇幅较长,可搭配饭菜一同“食”用,全篇无废话(除了这句),干货满满,可收藏供后期反复观看。注:MySQL中语法不区分大小写,本篇中...

深入剖析 MySQL 中的锁机制原理_mysql 锁详解

在互联网软件开发领域,MySQL作为一款广泛应用的关系型数据库管理系统,其锁机制在保障数据一致性和实现并发控制方面扮演着举足轻重的角色。对于互联网软件开发人员而言,深入理解MySQL的锁机制原理...

Java 与 MySQL 性能优化:MySQL分区表设计与性能优化全解析

引言在数据库管理领域,随着数据量的不断增长,如何高效地管理和操作数据成为了一个关键问题。MySQL分区表作为一种有效的数据管理技术,能够将大型表划分为多个更小、更易管理的分区,从而提升数据库的性能和可...

MySQL基础篇:DQL数据查询操作_mysql 查

一、基础查询DQL基础查询语法SELECT字段列表FROM表名列表WHERE条件列表GROUPBY分组字段列表HAVING分组后条件列表ORDERBY排序字段列表LIMIT...

MySql:索引的基本使用_mysql索引的使用和原理

一、索引基础概念1.什么是索引?索引是数据库表的特殊数据结构(通常是B+树),用于...