百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT技术 > 正文

抖音上好看的小姐姐,Python给你都下载了

wptr33 2025-04-08 19:45 6 浏览

阅读文本大概需要 15 分钟。


1

目 标 场 景


相信大家平时刷抖音短视频的时候,看到颜值高的小姐姐,都有随手点赞关注的习惯。

如果一条条去刷确实很耗时间,如果 Python 能帮忙筛选出颜值高的小姐姐那就省了很多事。

本篇文章是借助「百度人脸识别」API,帮我们识别出抖音上颜值高的小姐姐,然后下载到手机相册中。


2

准 备 工 作


首先,项目需要对页面元素进行一些精准的操作,需要提前准备一部 Android 设备,激活开发者选项,并在开发者选项中打开 「USB 调试和指针位置」两处设置。

为了确保 adb 命令能正常使用,需要提前配置好 adb 开发环境。

页面元素中的部分元素没法利用 name 等常用属性获取到,可能需要获取到完整的「UI 树」,再利用 Airtest 判断是否存在某个 UI 元素。

另外,项目中会对视频进行人脸识别,获取到出现的所有人脸,再进行性别识别及颜值判断。

这里需要进行百度云后台,注册一个人脸识别的应用,获取到一组 「API Key 和 Secret Key」值。

然后利用官网提供的 API 文档即可获取到「access token」,由于 ak 的有效期为一个月,所以只需要初始化一次,后面就可以利用人脸识别接口进行正常的识别了。

appid = '你注册应用的appid'
api_key = '你注册应用的ak'
secret_key = '你注册应用的sk'
 
def get_access_token():
    """
     其关access_token有效期一般有一个月
    """
    # 此变量赋值成自己API Key的值
    client_id = api_key  
 
    # 此变量赋值成自己Secret Key的值
    client_secret = secret_key  
 
    auth_url = 'https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id=' + client_id + '&client_secret=' + client_secret
 
    header_dict = {'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; Trident/7.0; rv:11.0) like Gecko',
                   "Content-Type": "application/json"}
 
    # 请求获取到token的接口
    response_at = requests.get(auth_url, headers=header_dict)
    json_result = json.loads(response_at.text)
    access_token = json_result['access_token']
    return access_token

3

编 写 脚 本


在上面已经配置好了 adb 环境的情况下,可以直接借助 python 中的 os 模块执行 adb 命令打开抖音 App。

# 抖音App的应用包名和初始Activity
package_name = 'com.ss.android.ugc.aweme'
activity_name = 'com.ss.android.ugc.aweme.splash.SplashActivity'
 
	
def start_my_app(package_name, activity_name):
    """
    打开应用
    adb shell am start -n com.tencent.mm/.ui.LauncherUI
    :param package_name:
    :return:
    """
    os.popen('adb shell am start -n %s/%s' % (package_name, activity_name))

接着,我们需要截取当前播放视频的截图到本地。


需要注意的是,抖音视频播放界面包含视频创作者头像、BGM 创作者头像等一些杂乱的元素,可能对人脸识别的结果产生一些误差,所以需要对屏幕截图之后的图像进行「二次裁剪」处理。

def get_screen_shot_part_img(image_name):
    """
    获取手机截图的部分内容
    :return:
    """
    # 截图
    os.system("adb shell /system/bin/screencap -p /sdcard/screenshot.jpg")
    os.system("adb pull /sdcard/screenshot.jpg %s" % image_name)
 
    # 打开图片
    img = Image.open(image_name).convert('RGB')
 
    # 图片的原宽、高(1080*2160)
    w, h = img.size
 
    # 截取部分,去掉其头像、其他内容杂乱元素
    img = img.crop((0, 0, 900, 1500))
 
    img.thumbnail((int(w / 1.5), int(h / 1.5)))
 
    # 保存到本地
    img.save(image_name)
 
    return image_name

现在可以使用百度提供的 API 获取到上面截图的人脸列表。

def parse_face_pic(pic_url, pic_type, access_token):
    """
    人脸识别
    5秒之内
    :param pic_url:
    :param pic_type:
    :param access_token:
    :return:
    """
    url_fi = 'https://aip.baidubce.com/rest/2.0/face/v3/detect?access_token=' + access_token
 
    # 调用identify_faces,获取人脸列表
    json_faces = identify_faces(pic_url, pic_type, url_fi)
 
    if not json_faces:
        print('未识别到人脸')
        return None
    else:
        # 返回所有的人脸
        return json_faces

从上述的人脸列表中筛选出性别为女,年龄为 18-30 岁之间,颜值超过 70 的小姐姐。

def analysis_face(face_list):
    """
    分析人脸,判断颜值是否达标
    18-30之间,女,颜值大于80
    :param face_list:识别的脸的列表
    :return:
    """
    # 是否能找到高颜值的美女
    find_belle = False
    if face_list:
        print('一共识别到%d张人脸,下面开始识别是否有美女~' % len(face_list))
        for face in face_list:
            # 判断是男、女
            if face['gender']['type'] == 'female':
                age = face['age']
                beauty = face['beauty']
 
                if 18 <= age <= 30 and beauty>= 70:
                    print('颜值为:%d,及格,满足条件!' % beauty)
                    find_belle = True
                    break
                else:
                    print('颜值为:%d,不及格,继续~' % beauty)
                    continue
            else:
                print('性别为男,继续~')
                continue
    else:
        print('图片中没有发现人脸.')
 
    return find_belle

由于视频是连续播放的,很难通过截取视频某一帧,判断视频有出现颜值高的小姐姐。


另外,大部分短视频播放时长为「10s+」,这里需要对每一个视频多次截图去做人脸识别,直到识别到颜值高的小姐姐。

# 一条视频最长的识别时间	
RECOGNITE_TOTAL_TIME = 10 	
# 识别次数
recognite_count = 1
 
# 对当前视频截图去人脸识别
while True:
  # 获取截图
  print('开始第%d次截图' % recognite_count)
 
  # 截取屏幕有用的区域,过滤视频作者的头像、BGM作者的头像
  screen_name = get_screen_shot_part_img('images/temp%d.jpg' % recognite_count)
 
  # 人脸识别
  recognite_result = analysis_face(parse_face_pic(screen_name, TYPE_IMAGE_LOCAL, access_token))
 
  recognite_count += 1
 
  # 第n次识别结束后的时间
  recognite_time_end = datetime.now()
 
  # 这一条视频出现了颜值高的小姐姐
  if recognite_result:
         pass
  else:
         print('超时!!!这是一条没有吸引力的视频!')
         # 跳出里层循环
         break

一旦当前播放的视频识别出有颜值高的小姐姐,就需要模拟保存视频到本地的操作。

获取「分享」和「保存本地」两个按钮的坐标位置,依次利用 adb 执行点击操作即可下载视频到本地。


def save_video_met():
    """
    :return:
    """
    # 分享
    os.system("adb shell input tap 1000 1500")
    time.sleep(0.05)
 
    # 保存到本地
    os.system("adb shell input tap 350 1700")

另外,由于下载视频的过程是一个耗时操作,在下载进度对话框还未消失之前,需要做一个「模拟等待」的操作。

def wait_for_download_finished(poco):
    """
    从点击下载,到下载完全
    :return:
    """
 
    element = Element()
    while True:
        # 由于是对话框,不能利用Element类来判断是否存在某个元素来准确处理
        # element_result = element.findElementByName('正在保存到本地')
 
        # 当前页面UI树元素信息
        # 注意:保存的时候可能会获取元素异常,这里需要抛出,并终止循环
        # com.netease.open.libpoco.sdk.exceptions.NodeHasBeenRemovedException: Node was no longer alive when query attribute "visible". Please re-select.
        try:
            ui_tree_content = json.dumps(poco.agent.hierarchy.dump(), indent=4).encode('utf-8').decode('unicode_escape')
        except Exception as e:
            print(e)
            print('异常,按下载处理~')
            break
 
        if '正在保存到本地' in ui_tree_content:
            print('还在下载中~')
            time.sleep(0.5)
            continue
        else:
            print('下载完成~')
            break

在视频保存到本地之后,就可以模拟向上滑动的操作,跳到播放「下一条视频」。

循环上面的操作,即可筛选出所有颜值高的小姐姐,并保存到本地。

def play_next_video():
    """
    下一个视频
    从下往上滑动
    :return:
    """
    os.system("adb shell input swipe 540 1300 540 500 100")

在脚本一条条刷视频的过程中,可能会遇到一下广告,我们需要对这类视频进行过滤。

def is_a_ad():
    """
    判断的当前页面上是否是一条广告
    :return:
    """
    element = Element()
    ad_tips = ['去玩一下', '去体验', '立即下载']
 
    find_result = False
 
    for ad_tip in ad_tips:
        try:
            element_result = element.findElementByName(ad_tip)
            # 是一条广告,直接跳出
            find_result = True
            break
        except Exception as e:
            find_result = False
 
    return find_result

4

结 果 结 论


运行上面的脚本,会自动打开抖音,对每一条小视频多次进行人脸识别,直到识别到颜值高的小姐姐,保存视频到本地,然后继续刷下一条短视频。

最后,小编想说:我是一名python开发工程师,
整理了一套最新的python系统学习教程,
想要这些资料的可以关注私信小编“01”即可(免费分享哦)希望能对你有所帮助

相关推荐

Linux高性能服务器设计

C10K和C10M计算机领域的很多技术都是需求推动的,上世纪90年代,由于互联网的飞速发展,网络服务器无法支撑快速增长的用户规模。1999年,DanKegel提出了著名的C10问题:一台服务器上同时...

独立游戏开发者常犯的十大错误

...

学C了一头雾水该咋办?

学C了一头雾水该怎么办?最简单的方法就是你再学一遍呗。俗话说熟能生巧,铁杵也能磨成针。但是一味的为学而学,这个好像没什么卵用。为什么学了还是一头雾水,重点就在这,找出为什么会这个样子?1、概念理解不深...

C++基础语法梳理:inline 内联函数!虚函数可以是内联函数吗?

上节我们分析了C++基础语法的const,static以及this指针,那么这节内容我们来看一下inline内联函数吧!inline内联函数...

C语言实战小游戏:井字棋(三子棋)大战!文内含有源码

井字棋是黑白棋的一种。井字棋是一种民间传统游戏,又叫九宫棋、圈圈叉叉、一条龙、三子旗等。将正方形对角线连起来,相对两边依次摆上三个双方棋子,只要将自己的三个棋子走成一条线,对方就算输了。但是,有很多时...

C++语言到底是不是C语言的超集之一

C与C++两个关系亲密的编程语言,它们本质上是两中语言,只是C++语言设计时要求尽可能的兼容C语言特性,因此C语言中99%以上的功能都可以使用C++完成。本文探讨那些存在于C语言中的特性,但是在C++...

在C++中,如何避免出现Bug?

C++中的主要问题之一是存在大量行为未定义或对程序员来说意外的构造。我们在使用静态分析器检查各种项目时经常会遇到这些问题。但正如我们所知,最佳做法是在编译阶段尽早检测错误。让我们来看看现代C++中的一...

ESL-通过事件控制FreeSWITCH

通过事件提供的最底层控制机制,允许我们有效地利用工具箱,适时选择使用其中的单个工具。FreeSWITCH是一个核心交换与混合矩阵,它周围有几十个模块提供各种功能特性。我们完全控制了所有的即时信息,这些...

物理老师教你学C++语言(中篇)

一、条件语句与实验判断...

C语言入门指南

当然!以下是关于C语言入门编程的基础介绍和入门建议,希望能帮你顺利起步:C语言入门指南...

C++选择结构,让程序自动进行决策

什么是选择结构?正常的程序都是从上至下顺序执行,这就是顺序结构...

C++特性使用建议

1.引用参数使用引用替代指针且所有不变的引用参数必须加上const。在C语言中,如果函数需要修改变量的值,参数必须为指针,如...

C++程序员学习Zig指南(中篇)

1.复合数据类型结构体与方法的对比C++类:...

研一自学C++啃得动吗?

研一自学C++啃得动吗?在开始前我有一些资料,是我根据网友给的问题精心整理了一份「C++的资料从专业入门到高级教程」,点个关注在评论区回复“888”之后私信回复“888”,全部无偿共享给大家!!!个人...

C++关键字介绍

下表列出了C++中的常用关键字,这些关键字不能作为变量名或其他标识符名称。1、autoC++11的auto用于表示变量的自动类型推断。即在声明变量的时候,根据变量初始值的类型自动为此变量选择匹配的...