RAG实战篇:精准判断用户查询意图,自动选择最佳处理方案
wptr33 2025-04-11 08:27 28 浏览
在人工智能领域,理解和准确响应用户的查询是构建高效交互系统的关键。这篇文章将带你深入了解如何通过高级查询转换技术,优化大型语言模型的理解能力,使其更贴近用户的真正意图。
在《RAG实战篇:构建一个最小可行性的Rag系统》中,风叔详细介绍了Rag系统的整体实现框架,以及如何搭建一个最基本的Naive Rag。
在前面两篇文章中,风叔分别介绍了索引(Indexing)和查询转换(Query Translation)环节的优化方案。
在这篇文章中,围绕Routing(路由)环节,如下图橙色框内所示,风叔详细介绍一下面对不同的用户输入,如何让大模型更智能地路由到最佳方案。
路由的作用,是为每个Query选择最合适的处理管道,以及依据来自模型的输入或补充的元数据,来确定将启用哪些模块。比如当用户的输入问题涉及到跨文档检索、或者对于复杂文档构建了多级索引时,就需要使用路由机制。
下面,我们结合源代码,介绍一下Logical routing(基于逻辑的路由)和Sematic Routing(基于语义的路由)两种方案。
一、Logical routing(基于逻辑的路由)
基于逻辑的路由,其原理非常简单。大模型接收到问题之后,根据决策步骤,去选择正确的索引数据库,比如图数据库、向量数据库等等,如下图所示。
其使用函数调用(function calling)来产生结构化输出。
下面我们结合源代码来分析一下Logical Routing的流程:
- 首先我们定义了三种文档,pytion、js、golang
- 然后通过prompt告诉大模型,需要根据所涉及的编程语言,将用户问题路由到适当的数据源
- 定义Router
# Data model
class RouteQuery(BaseModel):
"""Route a user query to the most relevant datasource."""
datasource: Literal["python_docs", "js_docs", "golang_docs"] = Field(
...,
description="Given a user question choose which datasource would be most relevant for answering their question",
)
# LLM with function call
llm = ChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0)
structured_llm = llm.with_structured_output(RouteQuery)
# Prompt
system = """You are an expert at routing a user question to the appropriate data source.
Based on the programming language the question is referring to, route it to the relevant data source."""
prompt = ChatPromptTemplate.from_messages(
[
("system", system),
("human", "{question}"),
])
# Define router
router = prompt | structured_llm
接着给出了一个使用示例,用户提问后,路由器根据问题的内容判断出数据源为 python_docs,并返回了相应的结果。
question = """Why doesn't the following code work:
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_messages(["human", "speak in {language}"])
prompt.invoke("french")
"""
result = router.invoke({"question": question})
result.datasource
def choose_route(result):
if "python_docs" in result.datasource.lower:
### Logic here
return "chain for python_docs"
elif "js_docs" in result.datasource.lower:
### Logic here
return "chain for js_docs"
else:
### Logic here
return "golang_docs"
from langchain_core.runnables import RunnableLambda
full_chain = router | RunnableLambda(choose_route)
full_chain.invoke({"question": question})
二、Sematicrouting(基于语义的路由)
基于语义的路由,其原理也非常简单,大模型根据query的语义相似度,去自动配置不同的prompt。
我们先定义两种不同的Prompt,一个让大模型扮演物理专家,一个让大模型扮演数学专家,并将其转为嵌入向量。
# Two prompts
physics_template = """You are a very smart physics professor.
You are great at answering questions about physics in a concise and easy to understand manner.
When you don't know the answer to a question you admit that you don't know.
Here is a question:
{query}"""
math_template = """You are a very good mathematician. You are great at answering math questions.
You are so good because you are able to break down hard problems into their component parts,
answer the component parts, and then put them together to answer the broader question.
Here is a question:
{query}"""
embeddings = OpenAIEmbeddings
prompt_templates = [physics_template, math_template]
prompt_embeddings = embeddings.embed_documents(prompt_templates)
然后计算query embedding和prompt embedding的向量相似度
# Route question to prompt
def prompt_router(input):
# Embed question
query_embedding = embeddings.embed_query(input["query"])
# Compute similarity
similarity = cosine_similarity([query_embedding], prompt_embeddings)[0]
most_similar = prompt_templates[similarity.argmax()]
# Chosen prompt
print("Using MATH" if most_similar == math_template else "Using PHYSICS")
return PromptTemplate.from_template(most_similar)
chain = (
{"query": RunnablePassthrough}
| RunnableLambda(prompt_router)
| ChatOpenAI
| StrOutputParser
)
print(chain.invoke("What's a black hole"))
在上述案例中,最终的输出会使用物理专家的Prompt。
到这里,两种常用的路由策略就介绍完了。当然,我们也可以自主构建更复杂的路由策略,比如构建专门的分类器、打分器等等,这里就不详细展开了。
三、总结
在这篇文章中,风叔介绍了实现查询路由的具体方法,包括Logical routing和Semantic routing两种实现方式。
很多时候,在一些特殊的场景下,我们需要将用户的输入转化为特定的语句,比如数据库查询动作。在下一篇文章中,风叔将重点围绕Query Construction(查询构建)环节,介绍如何将用户输入转变为特定的系统执行语句。
本文由人人都是产品经理作者【风叔】,微信公众号:【风叔云】,原创/授权 发布于人人都是产品经理,未经许可,禁止转载。
题图来自 Pixabay,基于 CC0 协议。
相关推荐
- MySQL进阶五之自动读写分离mysql-proxy
-
自动读写分离目前,大量现网用户的业务场景中存在读多写少、业务负载无法预测等情况,在有大量读请求的应用场景下,单个实例可能无法承受读取压力,甚至会对业务产生影响。为了实现读取能力的弹性扩展,分担数据库压...
- 3分钟短文 | Laravel SQL筛选两个日期之间的记录,怎么写?
-
引言今天说一个细分的需求,在模型中,或者使用laravel提供的EloquentORM功能,构造查询语句时,返回位于两个指定的日期之间的条目。应该怎么写?本文通过几个例子,为大家梳理一下。学习时...
- 一文由浅入深带你完全掌握MySQL的锁机制原理与应用
-
本文将跟大家聊聊InnoDB的锁。本文比较长,包括一条SQL是如何加锁的,一些加锁规则、如何分析和解决死锁问题等内容,建议耐心读完,肯定对大家有帮助的。为什么需要加锁呢?...
- 验证Mysql中联合索引的最左匹配原则
-
后端面试中一定是必问mysql的,在以往的面试中好几个面试官都反馈我Mysql基础不行,今天来着重复习一下自己的弱点知识。在Mysql调优中索引优化又是非常重要的方法,不管公司的大小只要后端项目中用到...
- MySQL索引解析(联合索引/最左前缀/覆盖索引/索引下推)
-
目录1.索引基础...
- 你会看 MySQL 的执行计划(EXPLAIN)吗?
-
SQL执行太慢怎么办?我们通常会使用EXPLAIN命令来查看SQL的执行计划,然后根据执行计划找出问题所在并进行优化。用法简介...
- MySQL 从入门到精通(四)之索引结构
-
索引概述索引(index),是帮助MySQL高效获取数据的数据结构(有序),在数据之外,数据库系统还维护者满足特定查询算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构...
- mysql总结——面试中最常问到的知识点
-
mysql作为开源数据库中的榜一大哥,一直是面试官们考察的重中之重。今天,我们来总结一下mysql的知识点,供大家复习参照,看完这些知识点,再加上一些边角细节,基本上能够应付大多mysql相关面试了(...
- mysql总结——面试中最常问到的知识点(2)
-
首先我们回顾一下上篇内容,主要复习了索引,事务,锁,以及SQL优化的工具。本篇文章接着写后面的内容。性能优化索引优化,SQL中索引的相关优化主要有以下几个方面:最好是全匹配。如果是联合索引的话,遵循最...
- MySQL基础全知全解!超详细无废话!轻松上手~
-
本期内容提醒:全篇2300+字,篇幅较长,可搭配饭菜一同“食”用,全篇无废话(除了这句),干货满满,可收藏供后期反复观看。注:MySQL中语法不区分大小写,本篇中...
- 深入剖析 MySQL 中的锁机制原理_mysql 锁详解
-
在互联网软件开发领域,MySQL作为一款广泛应用的关系型数据库管理系统,其锁机制在保障数据一致性和实现并发控制方面扮演着举足轻重的角色。对于互联网软件开发人员而言,深入理解MySQL的锁机制原理...
- Java 与 MySQL 性能优化:MySQL分区表设计与性能优化全解析
-
引言在数据库管理领域,随着数据量的不断增长,如何高效地管理和操作数据成为了一个关键问题。MySQL分区表作为一种有效的数据管理技术,能够将大型表划分为多个更小、更易管理的分区,从而提升数据库的性能和可...
- MySQL基础篇:DQL数据查询操作_mysql 查
-
一、基础查询DQL基础查询语法SELECT字段列表FROM表名列表WHERE条件列表GROUPBY分组字段列表HAVING分组后条件列表ORDERBY排序字段列表LIMIT...
- MySql:索引的基本使用_mysql索引的使用和原理
-
一、索引基础概念1.什么是索引?索引是数据库表的特殊数据结构(通常是B+树),用于...
- 一周热门
-
-
C# 13 和 .NET 9 全知道 :13 使用 ASP.NET Core 构建网站 (1)
-
程序员的开源月刊《HelloGitHub》第 71 期
-
详细介绍一下Redis的Watch机制,可以利用Watch机制来做什么?
-
假如有100W个用户抢一张票,除了负载均衡办法,怎么支持高并发?
-
如何将AI助手接入微信(打开ai手机助手)
-
Java面试必考问题:什么是乐观锁与悲观锁
-
SparkSQL——DataFrame的创建与使用
-
redission YYDS spring boot redission 使用
-
一文带你了解Redis与Memcached? redis与memcached的区别
-
如何利用Redis进行事务处理呢? 如何利用redis进行事务处理呢英文
-
- 最近发表
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)
- c语言 switch (34)
- git commit (34)