RAG实战篇:精准判断用户查询意图,自动选择最佳处理方案
wptr33 2025-04-11 08:27 33 浏览
在人工智能领域,理解和准确响应用户的查询是构建高效交互系统的关键。这篇文章将带你深入了解如何通过高级查询转换技术,优化大型语言模型的理解能力,使其更贴近用户的真正意图。
在《RAG实战篇:构建一个最小可行性的Rag系统》中,风叔详细介绍了Rag系统的整体实现框架,以及如何搭建一个最基本的Naive Rag。
在前面两篇文章中,风叔分别介绍了索引(Indexing)和查询转换(Query Translation)环节的优化方案。
在这篇文章中,围绕Routing(路由)环节,如下图橙色框内所示,风叔详细介绍一下面对不同的用户输入,如何让大模型更智能地路由到最佳方案。
路由的作用,是为每个Query选择最合适的处理管道,以及依据来自模型的输入或补充的元数据,来确定将启用哪些模块。比如当用户的输入问题涉及到跨文档检索、或者对于复杂文档构建了多级索引时,就需要使用路由机制。
下面,我们结合源代码,介绍一下Logical routing(基于逻辑的路由)和Sematic Routing(基于语义的路由)两种方案。
一、Logical routing(基于逻辑的路由)
基于逻辑的路由,其原理非常简单。大模型接收到问题之后,根据决策步骤,去选择正确的索引数据库,比如图数据库、向量数据库等等,如下图所示。
其使用函数调用(function calling)来产生结构化输出。
下面我们结合源代码来分析一下Logical Routing的流程:
- 首先我们定义了三种文档,pytion、js、golang
 - 然后通过prompt告诉大模型,需要根据所涉及的编程语言,将用户问题路由到适当的数据源
 - 定义Router
 
# Data model
class RouteQuery(BaseModel):
    """Route a user query to the most relevant datasource."""
    datasource: Literal["python_docs", "js_docs", "golang_docs"] = Field(
        ...,
        description="Given a user question choose which datasource would be most relevant for answering their question",
    )# LLM with function call 
llm = ChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0)
structured_llm = llm.with_structured_output(RouteQuery)# Prompt 
system = """You are an expert at routing a user question to the appropriate data source.
Based on the programming language the question is referring to, route it to the relevant data source."""
prompt = ChatPromptTemplate.from_messages(
    [
        ("system", system),
        ("human", "{question}"),
    ])
# Define router 
router = prompt | structured_llm接着给出了一个使用示例,用户提问后,路由器根据问题的内容判断出数据源为 python_docs,并返回了相应的结果。
question = """Why doesn't the following code work:
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_messages(["human", "speak in {language}"])
prompt.invoke("french")
"""
result = router.invoke({"question": question})
result.datasource
def choose_route(result):
    if "python_docs" in result.datasource.lower:
        ### Logic here 
        return "chain for python_docs"
    elif "js_docs" in result.datasource.lower:
        ### Logic here 
        return "chain for js_docs"
    else:
        ### Logic here 
        return "golang_docs"from langchain_core.runnables import RunnableLambda
full_chain = router | RunnableLambda(choose_route)
full_chain.invoke({"question": question})二、Sematicrouting(基于语义的路由)
基于语义的路由,其原理也非常简单,大模型根据query的语义相似度,去自动配置不同的prompt。
我们先定义两种不同的Prompt,一个让大模型扮演物理专家,一个让大模型扮演数学专家,并将其转为嵌入向量。
# Two prompts
physics_template = """You are a very smart physics professor. 
You are great at answering questions about physics in a concise and easy to understand manner. 
When you don't know the answer to a question you admit that you don't know.
Here is a question:
{query}"""math_template = """You are a very good mathematician. You are great at answering math questions. 
You are so good because you are able to break down hard problems into their component parts, 
answer the component parts, and then put them together to answer the broader question.
Here is a question:
{query}"""embeddings = OpenAIEmbeddings
prompt_templates = [physics_template, math_template]
prompt_embeddings = embeddings.embed_documents(prompt_templates)然后计算query embedding和prompt embedding的向量相似度
# Route question to prompt 
def prompt_router(input):
    # Embed question
    query_embedding = embeddings.embed_query(input["query"])
    # Compute similarity
    similarity = cosine_similarity([query_embedding], prompt_embeddings)[0]
    most_similar = prompt_templates[similarity.argmax()]
    # Chosen prompt 
    print("Using MATH" if most_similar == math_template else "Using PHYSICS")
    return PromptTemplate.from_template(most_similar)chain = (
    {"query": RunnablePassthrough}
    | RunnableLambda(prompt_router)
    | ChatOpenAI
    | StrOutputParser
)
print(chain.invoke("What's a black hole"))在上述案例中,最终的输出会使用物理专家的Prompt。
到这里,两种常用的路由策略就介绍完了。当然,我们也可以自主构建更复杂的路由策略,比如构建专门的分类器、打分器等等,这里就不详细展开了。
三、总结
在这篇文章中,风叔介绍了实现查询路由的具体方法,包括Logical routing和Semantic routing两种实现方式。
很多时候,在一些特殊的场景下,我们需要将用户的输入转化为特定的语句,比如数据库查询动作。在下一篇文章中,风叔将重点围绕Query Construction(查询构建)环节,介绍如何将用户输入转变为特定的系统执行语句。
本文由人人都是产品经理作者【风叔】,微信公众号:【风叔云】,原创/授权 发布于人人都是产品经理,未经许可,禁止转载。
题图来自 Pixabay,基于 CC0 协议。
相关推荐
- oracle数据导入导出_oracle数据导入导出工具
 - 
                        
关于oracle的数据导入导出,这个功能的使用场景,一般是换服务环境,把原先的oracle数据导入到另外一台oracle数据库,或者导出备份使用。只不过oracle的导入导出命令不好记忆,稍稍有点复杂...
 
- 继续学习Python中的while true/break语句
 - 
                        
上次讲到if语句的用法,大家在微信公众号问了小编很多问题,那么小编在这几种解决一下,1.else和elif是子模块,不能单独使用2.一个if语句中可以包括很多个elif语句,但结尾只能有一个...
 
- python continue和break的区别_python中break语句和continue语句的区别
 - 
                        
python中循环语句经常会使用continue和break,那么这2者的区别是?continue是跳出本次循环,进行下一次循环;break是跳出整个循环;例如:...
 
- 简单学Python——关键字6——break和continue
 - 
                        
Python退出循环,有break语句和continue语句两种实现方式。break语句和continue语句的区别:break语句作用是终止循环。continue语句作用是跳出本轮循环,继续下一次循...
 
- 2-1,0基础学Python之 break退出循环、 continue继续循环 多重循
 - 
                        
用for循环或者while循环时,如果要在循环体内直接退出循环,可以使用break语句。比如计算1至100的整数和,我们用while来实现:sum=0x=1whileTrue...
 
- Python 中 break 和 continue 傻傻分不清
 - 
                        
大家好啊,我是大田。...
 
- python中的流程控制语句:continue、break 和 return使用方法
 - 
                        
Python中,continue、break和return是控制流程的关键语句,用于在循环或函数中提前退出或跳过某些操作。它们的用途和区别如下:1.continue(跳过当前循环的剩余部分,进...
 
- L017:continue和break - 教程文案
 - 
                        
continue和break在Python中,continue和break是用于控制循环(如for和while)执行流程的关键字,它们的作用如下:1.continue:跳过当前迭代,...
 
- 作为前端开发者,你都经历过怎样的面试?
 - 
                        
已经裸辞1个月了,最近开始投简历找工作,遇到各种各样的面试,今天分享一下。其实在职的时候也做过面试官,面试官时,感觉自己问的问题很难区分候选人的能力,最好的办法就是看看候选人的github上的代码仓库...
 
- 面试被问 const 是否不可变?这样回答才显功底
 - 
                        
作为前端开发者,我在学习ES6特性时,总被const的"善变"搞得一头雾水——为什么用const声明的数组还能push元素?为什么基本类型赋值就会报错?直到翻遍MDN文档、对着内存图反...
 
- 2023金九银十必看前端面试题!2w字精品!
 - 
                        
导文2023金九银十必看前端面试题!金九银十黄金期来了想要跳槽的小伙伴快来看啊CSS1.请解释CSS的盒模型是什么,并描述其组成部分。...
 
- 前端面试总结_前端面试题整理
 - 
                        
记得当时大二的时候,看到实验室的学长学姐忙于各种春招,有些收获了大厂offer,有些还在苦苦面试,其实那时候的心里还蛮忐忑的,不知道自己大三的时候会是什么样的一个水平,所以从19年的寒假放完,大二下学...
 
- 由浅入深,66条JavaScript面试知识点(七)
 - 
                        
作者:JakeZhang转发链接:https://juejin.im/post/5ef8377f6fb9a07e693a6061目录...
 
- 2024前端面试真题之—VUE篇_前端面试题vue2020及答案
 - 
                        
添加图片注释,不超过140字(可选)...
 
- 今年最常见的前端面试题,你会做几道?
 - 
                        
在面试或招聘前端开发人员时,期望、现实和需求之间总是存在着巨大差距。面试其实是一个交流想法的地方,挑战人们的思考方式,并客观地分析给定的问题。可以通过面试了解人们如何做出决策,了解一个人对技术和解决问...
 
- 一周热门
 
- 最近发表
 - 
- oracle数据导入导出_oracle数据导入导出工具
 - 继续学习Python中的while true/break语句
 - python continue和break的区别_python中break语句和continue语句的区别
 - 简单学Python——关键字6——break和continue
 - 2-1,0基础学Python之 break退出循环、 continue继续循环 多重循
 - Python 中 break 和 continue 傻傻分不清
 - python中的流程控制语句:continue、break 和 return使用方法
 - L017:continue和break - 教程文案
 - 作为前端开发者,你都经历过怎样的面试?
 - 面试被问 const 是否不可变?这样回答才显功底
 
 
- 标签列表
 - 
- git pull (33)
 - git fetch (35)
 - mysql insert (35)
 - mysql distinct (37)
 - concat_ws (36)
 - java continue (36)
 - jenkins官网 (37)
 - mysql 子查询 (37)
 - python元组 (33)
 - mybatis 分页 (35)
 - vba split (37)
 - redis watch (34)
 - python list sort (37)
 - nvarchar2 (34)
 - mysql not null (36)
 - hmset (35)
 - python telnet (35)
 - python readlines() 方法 (36)
 - munmap (35)
 - docker network create (35)
 - redis 集合 (37)
 - python sftp (37)
 - setpriority (34)
 - c语言 switch (34)
 - git commit (34)
 
 
