百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT技术 > 正文

RAG实战篇:精准判断用户查询意图,自动选择最佳处理方案

wptr33 2025-04-11 08:27 17 浏览

在人工智能领域,理解和准确响应用户的查询是构建高效交互系统的关键。这篇文章将带你深入了解如何通过高级查询转换技术,优化大型语言模型的理解能力,使其更贴近用户的真正意图。

在《RAG实战篇:构建一个最小可行性的Rag系统》中,风叔详细介绍了Rag系统的整体实现框架,以及如何搭建一个最基本的Naive Rag。

在前面两篇文章中,风叔分别介绍了索引(Indexing)和查询转换(Query Translation)环节的优化方案。

在这篇文章中,围绕Routing(路由)环节,如下图橙色框内所示,风叔详细介绍一下面对不同的用户输入,如何让大模型更智能地路由到最佳方案。

路由的作用,是为每个Query选择最合适的处理管道,以及依据来自模型的输入或补充的元数据,来确定将启用哪些模块。比如当用户的输入问题涉及到跨文档检索、或者对于复杂文档构建了多级索引时,就需要使用路由机制。

下面,我们结合源代码,介绍一下Logical routing(基于逻辑的路由)和Sematic Routing(基于语义的路由)两种方案。

一、Logical routing(基于逻辑的路由)

基于逻辑的路由,其原理非常简单。大模型接收到问题之后,根据决策步骤,去选择正确的索引数据库,比如图数据库、向量数据库等等,如下图所示。

其使用函数调用(function calling)来产生结构化输出。

下面我们结合源代码来分析一下Logical Routing的流程:

  • 首先我们定义了三种文档,pytion、js、golang
  • 然后通过prompt告诉大模型,需要根据所涉及的编程语言,将用户问题路由到适当的数据源
  • 定义Router
# Data model
class RouteQuery(BaseModel):
    """Route a user query to the most relevant datasource."""
    datasource: Literal["python_docs", "js_docs", "golang_docs"] = Field(
        ...,
        description="Given a user question choose which datasource would be most relevant for answering their question",
    )
# LLM with function call 
llm = ChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0)
structured_llm = llm.with_structured_output(RouteQuery)
# Prompt 
system = """You are an expert at routing a user question to the appropriate data source.
Based on the programming language the question is referring to, route it to the relevant data source."""
prompt = ChatPromptTemplate.from_messages(
    [
        ("system", system),
        ("human", "{question}"),
    ])
# Define router 
router = prompt | structured_llm

接着给出了一个使用示例,用户提问后,路由器根据问题的内容判断出数据源为 python_docs,并返回了相应的结果。

question = """Why doesn't the following code work:
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_messages(["human", "speak in {language}"])
prompt.invoke("french")
"""
result = router.invoke({"question": question})
result.datasource
def choose_route(result):
    if "python_docs" in result.datasource.lower:
        ### Logic here 
        return "chain for python_docs"
    elif "js_docs" in result.datasource.lower:
        ### Logic here 
        return "chain for js_docs"
    else:
        ### Logic here 
        return "golang_docs"
from langchain_core.runnables import RunnableLambda
full_chain = router | RunnableLambda(choose_route)
full_chain.invoke({"question": question})

二、Sematicrouting(基于语义的路由)

基于语义的路由,其原理也非常简单,大模型根据query的语义相似度,去自动配置不同的prompt。

我们先定义两种不同的Prompt,一个让大模型扮演物理专家,一个让大模型扮演数学专家,并将其转为嵌入向量。

# Two prompts
physics_template = """You are a very smart physics professor. 
You are great at answering questions about physics in a concise and easy to understand manner. 
When you don't know the answer to a question you admit that you don't know.
Here is a question:
{query}"""
math_template = """You are a very good mathematician. You are great at answering math questions. 
You are so good because you are able to break down hard problems into their component parts, 
answer the component parts, and then put them together to answer the broader question.
Here is a question:
{query}"""
embeddings = OpenAIEmbeddings
prompt_templates = [physics_template, math_template]
prompt_embeddings = embeddings.embed_documents(prompt_templates)

然后计算query embedding和prompt embedding的向量相似度

# Route question to prompt 
def prompt_router(input):
    # Embed question
    query_embedding = embeddings.embed_query(input["query"])
    # Compute similarity
    similarity = cosine_similarity([query_embedding], prompt_embeddings)[0]
    most_similar = prompt_templates[similarity.argmax()]
    # Chosen prompt 
    print("Using MATH" if most_similar == math_template else "Using PHYSICS")
    return PromptTemplate.from_template(most_similar)
chain = (
    {"query": RunnablePassthrough}
    | RunnableLambda(prompt_router)
    | ChatOpenAI
    | StrOutputParser
)
print(chain.invoke("What's a black hole"))

在上述案例中,最终的输出会使用物理专家的Prompt。

到这里,两种常用的路由策略就介绍完了。当然,我们也可以自主构建更复杂的路由策略,比如构建专门的分类器、打分器等等,这里就不详细展开了。

三、总结

在这篇文章中,风叔介绍了实现查询路由的具体方法,包括Logical routing和Semantic routing两种实现方式。

很多时候,在一些特殊的场景下,我们需要将用户的输入转化为特定的语句,比如数据库查询动作。在下一篇文章中,风叔将重点围绕Query Construction(查询构建)环节,介绍如何将用户输入转变为特定的系统执行语句。

本文由人人都是产品经理作者【风叔】,微信公众号:【风叔云】,原创/授权 发布于人人都是产品经理,未经许可,禁止转载。

题图来自 Pixabay,基于 CC0 协议。

相关推荐

每天一个编程技巧!掌握这7个神技,代码效率飙升200%

“同事6点下班,你却为改BUG加班到凌晨?不是你不努力,而是没掌握‘偷懒’的艺术!本文揭秘谷歌工程师私藏的7个编程神技,每天1分钟,让你的代码从‘能用’变‘逆天’。文末附《Python高效代码模板》,...

Git重置到某个历史节点(Sourcetree工具)

前言Sourcetree回滚提交和重置当前分支到此次提交的区别?回滚提交是指将改动的代码提交到本地仓库,但未推送到远端仓库的时候。...

git工作区、暂存区、本地仓库、远程仓库的区别和联系

很多程序员天天写代码,提交代码,拉取代码,对git操作非常熟练,但是对git的原理并不甚了解,借助豆包AI,写个文章总结一下。Git的四个核心区域(工作区、暂存区、本地仓库、远程仓库)是版本控制的核...

解锁人生新剧本的密钥:学会让往事退场

开篇:敦煌莫高窟的千年启示在莫高窟321窟的《降魔变》壁画前,讲解员指着斑驳色彩说:"画师刻意保留了历代修补痕迹,因为真正的传承不是定格,而是流动。"就像我们的人生剧本,精彩章节永远...

Reset local repository branch to be just like remote repository HEAD

技术背景在使用Git进行版本控制时,有时会遇到本地分支与远程分支不一致的情况。可能是因为误操作、多人协作时远程分支被更新等原因。这时就需要将本地分支重置为与远程分支的...

Git恢复至之前版本(git恢复到pull之前的版本)

让程序回到提交前的样子:两种解决方法:回退(reset)、反做(revert)方法一:gitreset...

如何将文件重置或回退到特定版本(怎么让文件回到初始状态)

技术背景在使用Git进行版本控制时,经常会遇到需要将文件回退到特定版本的情况。可能是因为当前版本出现了错误,或者想要恢复到之前某个稳定的版本。Git提供了多种方式来实现这一需求。...

git如何正确回滚代码(git命令回滚代码)

方法一,删除远程分支再提交①首先两步保证当前工作区是干净的,并且和远程分支代码一致$gitcocurrentBranch$gitpullorigincurrentBranch$gi...

[git]撤销的相关命令:reset、revert、checkout

基本概念如果不清晰上面的四个概念,请查看廖老师的git教程这里我多说几句:最开始我使用git的时候,我并不明白我为什么写完代码要用git的一些列指令把我的修改存起来。后来用多了,也就明白了为什么。gi...

利用shell脚本将Mysql错误日志保存到数据库中

说明:利用shell脚本将MYSQL的错误日志提取并保存到数据库中步骤:1)创建数据库,创建表CreatedatabaseMysqlCenter;UseMysqlCenter;CREATET...

MySQL 9.3 引入增强的JavaScript支持

MySQL,这一广泛采用的开源关系型数据库管理系统(RDBMS),发布了其9.x系列的第三个更新版本——9.3版,带来了多项新功能。...

python 连接 mysql 数据库(python连接MySQL数据库案例)

用PyMySQL包来连接Python和MySQL。在使用前需要先通过pip来安装PyMySQL包:在windows系统中打开cmd,输入pipinstallPyMySQL ...

mysql导入导出命令(mysql 导入命令)

mysql导入导出命令mysqldump命令的输入是在bin目录下.1.导出整个数据库  mysqldump-u用户名-p数据库名>导出的文件名  mysqldump-uw...

MySQL-SQL介绍(mysql sqlyog)

介绍结构化查询语言是高级的非过程化编程语言,允许用户在高层数据结构上工作。它不要求用户指定对数据的存放方法,也不需要用户了解具体的数据存放方式,所以具有完全不同底层结构的不同数据库系统,可以使用相同...

MySQL 误删除数据恢复全攻略:基于 Binlog 的实战指南

在MySQL的世界里,二进制日志(Binlog)就是我们的"时光机"。它默默记录着数据库的每一个重要变更,就像一位忠实的史官,为我们在数据灾难中提供最后的救命稻草。本文将带您深入掌握如...