百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT技术 > 正文

盘点c++几种常见的设计模式及具体实现

wptr33 2025-04-27 16:40 21 浏览

1.单例模式

作用:保证一个类只有一个实例,并提供一个访问它的全局访问点,使得系统中只有唯一的一个对象实例。

应用:常用于管理资源,如日志、线程池

实现要点:

在类中,要构造一个实例,就必须调用类的构造函数,并且为了保证全局只有一个实例,

需防止在外部调用类的构造函数而构造实例,需要将构造函数的访问权限标记为private,

同时阻止拷贝创建对象时赋值时拷贝对象,因此也将它们声明并权限标记为private;

另外,需要提供一个全局访问点,就需要在类中定义一个static函数,返回在类内部唯一构造的实例。

class Singleton{
public:
static Singleton& getInstance(){
static Singleton instance;
return instance;
}
void printTest(){
cout<<"do something"<<endl;
}
private:
Singleton(){}//防止外部调用构造创建对象
Singleton(Singleton const &singleton);//阻止拷贝创建对象
Singleton& operator=(Singleton const &singleton);//阻止赋值对象
};
int main()
{
Singleton &a=Singleton::getInstance();
a.printTest();
return 0;
}

首先,构造函数声明成private的目的是只允许内部调用,getInstance()中的静态局部变量创建时调用,但不允许外部调用构造创建第二个实例;

然后,拷贝构造和拷贝赋值符是声明成了private而不给出定义,其目的是阻止拷贝,如果企图通过拷贝构造来创建第二个实例,编译器会报错。

阻止拷贝的另一种写法是声明后接一个"=delete",也能起到相同的作用(C++11)。

2.工厂模式

工厂模式包括三种:简单工厂模式、工厂方法模式、抽象工厂模式。

工厂模式的主要作用是封装对象的创建,分离对象的创建和操作过程,用于批量管理对象的创建过程,便于程序的维护和扩展。

(1)简单工厂模式

简单工厂是工厂模式最简单的一种实现,对于不同产品的创建定义一个工厂类,将产品的类型作为参数传入到工厂的创建函数,根据类型分支选择不同的产品构造函数。

//简单工厂模式
typedef enum ProductTypeTag
{
TypeA,
TypeB,
TypeC
}PRODUCTTYPE;
class Product//产品抽象基类
{
public:
virtual void Show() = 0;
};
class ProductA : public Product
{
public:
void Show()
{
cout<<"I'm ProductA"<<endl;
}
};
class ProductB : public Product
{
public:
void Show()
{
cout<<"I'm ProductB"<<endl;
}
};
class ProductC : public Product
{
public:
void Show()
{
cout<<"I'm ProductC"<<endl;
}
};
class Factory//工厂类
{
public:
Product* CreateProduct(PRODUCTTYPE type)
{
switch (type)
{
case TypeA:
return new ProductA();
case TypeB:
return new ProductB();
case TypeC:
return new ProductC();
default:
return NULL;
}
}
};
int main()
{
Factory productCreator;
Product *productA=productCreator.CreateProduct(TypeA);
Product *productB=productCreator.CreateProduct(TypeB);
Product *productC=productCreator.CreateProduct(TypeC);
productA->Show();
productB->Show();
productC->Show();
if(productA){
delete productA;
productA=NULL;
}
if(productB){
delete productB;
productB=NULL;
}
if(productC){
delete productC;
productC=NULL;
}
return 0;
}

需要C/C++ Linux服务器架构师学习资料后台私信“资料”(资料包括C/C++,Linux,golang技术,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,ffmpeg等),免费分享

(2)工厂方法模式

其实这才是正宗的工厂模式,简单工厂模式只是一个简单的对创建过程封装。工厂方法模式在简单工厂模式的基础上增加对工厂的基类抽象,不同的产品创建采用不同的工厂创建(从工厂的抽象基类派生),这样创建不同的产品过程就由不同的工厂分工解决:FactoryA专心负责生产ProductA,FactoryB专心负责生产ProductB,FactoryA和FactoryB之间没有关系;如果到了后期,如果需要生产ProductC时,我们则可以创建一个FactoryC工厂类,该类专心负责生产ProductC类产品。

该模式相对于简单工厂模式的优势在于:便于后期产品种类的扩展。

//工厂方法模式
typedef enum ProductTypeTag
{
TypeA,
TypeB,
TypeC
}PRODUCTTYPE;
class Product//产品抽象基类
{
public:
virtual void Show() = 0;
};
class ProductA : public Product
{
public:
void Show()
{
cout<<"I'm ProductA"<<endl;
}
};
class ProductB : public Product
{
public:
void Show()
{
cout<<"I'm ProductB"<<endl;
}
};
class Factory//工厂类
{
public:
virtual Product *createProduct()=0;
};
class FactoryA:public Factory{
public:
Product *createProduct(){
return new ProductA();
}
};
class FactoryB:public Factory{
public:
Product *createProduct(){
return new ProductB();
}
};
class FactoryC:public Factory{
public:
Product *createProduct(){
return new ProductC();
}
};
int main()
{
Factory *factoryA=new FactoryA();
Product *productA = factoryA->createProduct();
productA->Show();
Factory *factoryB=new FactoryB();
Product *productB = factoryB->createProduct();
productB->Show();
if (factoryA)
{
delete factoryA;
factoryA = NULL;
}
if (factoryB)
{
delete factoryB;
factoryB = NULL;
}
if (productA)
{
delete productA;
productA = NULL;
}
if (productB)
{
delete productB;
productB = NULL;
}
return 0;
}

(3)抽象工厂模式

抽象工厂模式对工厂方法模式进行了更加一般化的描述。工厂方法模式适用于产品种类结构单一的场合,为一类产品提供创建的接口;而抽象工厂方法适用于产品种类结构多的场合,就是当具有多个抽象产品类型时,抽象工厂便可以派上用场。

抽象工厂模式更适合实际情况,受生产线所限,让低端工厂生产不同种类的低端产品,高端工厂生产不同种类的高端产品。

//抽象工厂模式
class ProductA
{
public:
virtual void Show() = 0;
};
class ProductA1 : public ProductA//A类低端产品
{
public:
void Show()
{
cout<<"I'm ProductA1"<<endl;
}
};
class ProductA2 : public ProductA//A类高端产品
{
public:
void Show()
{
cout<<"I'm ProductA2"<<endl;
}
};
class ProductB
{
public:
virtual void Show() = 0;
};
class ProductB1 : public ProductB//B类低端产品
{
public:
void Show()
{
cout<<"I'm ProductB1"<<endl;
}
};
class ProductB2 : public ProductB//B类高端产品
{
public:
void Show()
{
cout<<"I'm ProductB2"<<endl;
}
};
class Factory
{
public:
virtual ProductA *CreateProductA() = 0;
virtual ProductB *CreateProductB() = 0;
};
class Factory1 : public Factory//1号工厂用于生产低端产品
{
public:
ProductA *CreateProductA()
{
return new ProductA1();
}
ProductB *CreateProductB()
{
return new ProductB1();
}
};
class Factory2 : public Factory//2号工厂用于生产高端产品
{
ProductA *CreateProductA()
{
return new ProductA2();
}
ProductB *CreateProductB()
{
return new ProductB2();
}
};
int main()
{
Factory *factory1 = new Factory1();
ProductA *productA1 = factory1->CreateProductA();
ProductB *productB1 = factory1->CreateProductB();
productA1->Show();
productB1->Show();
Factory *factory2 = new Factory2();
ProductA *productA2 = factory2->CreateProductA();
ProductB *productB2 = factory2->CreateProductB();
productA2->Show();
productB2->Show();
if (factory1)
{
delete factory1;
factory1 = NULL;
}
if (productA1)
{
delete productA1;
productA1= NULL;
}
if (productB1)
{
delete productB1;
productB1 = NULL;
}
if (factory2)
{
delete factory2;
factory2 = NULL;
}
if (productA2)
{
delete productA2;
productA2 = NULL;
}
if (productB2)
{
delete productB2;
productB2 = NULL;
}
}

3 策略模式

策略模式也是一种非常常用的设计模式,而且也不复杂。下面我们就来看看这种模式。

定义:策略模式定义了一系列的算法,并将每一个算法封装起来,而且使它们还可以相互替换。策略模式让算法独立于使用它的客户而独立变化。

角色:
抽象策略角色(Strategy): 抽象策略类。
具体策略角色(ConcreteStrategy):封装了继续相关的算法和行为。
环境角色(Context):持有一个策略类的引用,最终给客户端调用。

UML图:

事例: (该事例改编自一道网络设计模式面试题)

如现在你是一个设计师,你正在设计一种空调。但是你们的空调要支持3种模式。冷风模式(ColdWind), 热风模式(WramWind),无风模式(NoWind)。
当选择ColdWind模式,将输送冷风;当选择WarmWind模式,将输送热风;在选择NoWind模式时,空调什么都不做。你将考虑如何为空调设计应用程序?如果将来空调需要增加支持新的模式呢?

这道面试题,其实可以用各种模式实现,然而在这里我理解策略模式比较合适。我们将冷风模式,和热风模式以及无风模式可以理解为各种不同的算法。显然策略模式非常符合。

这里ColdWind, WramWind, NoWind 其实就是ConcreteStrategy。 IWnd 是抽象策略类。 所以我们开始这么封装我们策略类

#include <iostream>
using namespace std;
#define  free_ptr(p) \
	if(p) delete p; p = NULL;
 
class IWind{
public:
	virtual ~IWind(){};
	virtual void blowWind() = 0;
};
 
class ColdWind : public IWind{
public:
	void blowWind(){
		cout<<"Blowing cold wind!"<<endl;
	};
};
 
class WarmWind : public IWind{
public:
	void blowWind(){
		cout<<"Blowing warm wind!"<<endl;
	}
};
 
class NoWind : public IWind{
public:
	void blowWind(){
		cout<<"No Wind!"<<endl;
	}
};

然后我们实现一个windmode 的类,作为 wind 系列的环境类:

class WindMode{
public:
	WindMode(IWind* wind): m_wind(wind){};
	~WindMode(){free_ptr(m_wind);}
	void blowWind(){
		m_wind->blowWind();
	};
private:
	IWind* m_wind;
};

最后客户端代码:

int main(int argc, char* argv[])
{
	WindMode* warmWind = new WindMode(new WarmWind());
	WindMode* coldWind = new WindMode(new ColdWind());
	WindMode* noWind = new WindMode(new NoWind());
 
	warmWind->BlowWind();
	coldWind->BlowWind();
	noWind->BlowWind();
 
	free_ptr(warmWind);
	free_ptr(coldWind);
	free_ptr(noWind);
	system("pause");
	return 0;
}

(这个实例网上也有人用命令模式实现。命令模式请看我后面的博客。把冷风,热风,无风作为一种命令。当然这是另外一种思路,也未尝不可。但是我觉得如果采用命令模式。类的个数会相应增加(增加系列的命令类),造成额外的开销。当添加一个新模式的时候,你需要添加的类过多。或多或少不是那么明智。所以我个人认为在这里策略模式更好一些。)

总的说来策略模式:

优点:
1、 使用策略模式可以避免使用
多重条件转移语句。多重转移语句不易维护。
2、 策略模式让你可以动态的改变对象的行为,动态修改策略
缺点:
1、客户端必须知道所有的策略类,并自行决定使用哪一个策略类。
2、类过多---策略模式造成很多的策略类,每个具体策略类都会产生一个新类。(这点可以通过享元模式来克服类过多)

模式定义:

命令模式将“请求”封装成对象,以便使用不同的请求、队列或者日志来参数化其他对象。命令模式也支持可撤销的操作。

命令对象将动作和接受者包进对象中,这个对象只暴露一个execute()方法。

当需要将发出请求的对象和执行请求的对象解耦的时候,使用命令模式。

模式结构:

举例:

遥控器上有一个插槽,可以放上不同的装置,然后用按钮控制。我们这里放置电灯,并有开和关按钮。可以命令模式实现。

UML设计:

其中,RemoteControl为遥控器,LightOnCommand为开灯请求对象,LightOffCommand为关灯请求对象,他们继承自基类Command,这样设计可以使插槽在以后防止其他的装置。

#include <iostream>
 
using namespace std;
 
//电灯类
class Light
{
public:
	void on()
	{
		cout << "Light on !" << endl;
	}
 
	void off()
	{
		cout << "Light off !" << endl;
	}
};
//命令类
class Command
{
public:
	virtual void execute(){}
};
//具体命令类
class LigthOnCommand : public Command
{
public:
	LigthOnCommand(Light* lig):light(lig){}
	//execute方法
	void execute()
	{
		light->on();
	}
private:
	Light* light;
};
 
class LigthOffCommand : public Command
{
public:
	LigthOffCommand(Light* lig):light(lig){}
	void execute()
	{
		light->off();
	}
private:
	Light* light;
};
 
//遥控器类
class RemoteControl
{
public:
	void setCommand(Command* command)
	{
		slot = command;
	}
	void buttonOn()
	{
		slot->execute();
	}
private:
	Command* slot;
};
//客户代码
int main()
{
	RemoteControl lightOnControl;
	RemoteControl lightOffControl;
 
	Command* onCommand = new LigthOnCommand(new Light());
	Command* offCommand = new LigthOffCommand(new Light());
 
	lightOnControl.setCommand(onCommand);
	lightOffControl.setCommand(offCommand);
 
	lightOnControl.buttonOn();
	lightOffControl.buttonOn();
 
	return 0;
}

执行结果:

Lighton !

Lightoff !

请按任意键继续. .

相关推荐

MySQL进阶五之自动读写分离mysql-proxy

自动读写分离目前,大量现网用户的业务场景中存在读多写少、业务负载无法预测等情况,在有大量读请求的应用场景下,单个实例可能无法承受读取压力,甚至会对业务产生影响。为了实现读取能力的弹性扩展,分担数据库压...

Postgres vs MySQL_vs2022连接mysql数据库

...

3分钟短文 | Laravel SQL筛选两个日期之间的记录,怎么写?

引言今天说一个细分的需求,在模型中,或者使用laravel提供的EloquentORM功能,构造查询语句时,返回位于两个指定的日期之间的条目。应该怎么写?本文通过几个例子,为大家梳理一下。学习时...

一文由浅入深带你完全掌握MySQL的锁机制原理与应用

本文将跟大家聊聊InnoDB的锁。本文比较长,包括一条SQL是如何加锁的,一些加锁规则、如何分析和解决死锁问题等内容,建议耐心读完,肯定对大家有帮助的。为什么需要加锁呢?...

验证Mysql中联合索引的最左匹配原则

后端面试中一定是必问mysql的,在以往的面试中好几个面试官都反馈我Mysql基础不行,今天来着重复习一下自己的弱点知识。在Mysql调优中索引优化又是非常重要的方法,不管公司的大小只要后端项目中用到...

MySQL索引解析(联合索引/最左前缀/覆盖索引/索引下推)

目录1.索引基础...

你会看 MySQL 的执行计划(EXPLAIN)吗?

SQL执行太慢怎么办?我们通常会使用EXPLAIN命令来查看SQL的执行计划,然后根据执行计划找出问题所在并进行优化。用法简介...

MySQL 从入门到精通(四)之索引结构

索引概述索引(index),是帮助MySQL高效获取数据的数据结构(有序),在数据之外,数据库系统还维护者满足特定查询算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构...

mysql总结——面试中最常问到的知识点

mysql作为开源数据库中的榜一大哥,一直是面试官们考察的重中之重。今天,我们来总结一下mysql的知识点,供大家复习参照,看完这些知识点,再加上一些边角细节,基本上能够应付大多mysql相关面试了(...

mysql总结——面试中最常问到的知识点(2)

首先我们回顾一下上篇内容,主要复习了索引,事务,锁,以及SQL优化的工具。本篇文章接着写后面的内容。性能优化索引优化,SQL中索引的相关优化主要有以下几个方面:最好是全匹配。如果是联合索引的话,遵循最...

MySQL基础全知全解!超详细无废话!轻松上手~

本期内容提醒:全篇2300+字,篇幅较长,可搭配饭菜一同“食”用,全篇无废话(除了这句),干货满满,可收藏供后期反复观看。注:MySQL中语法不区分大小写,本篇中...

深入剖析 MySQL 中的锁机制原理_mysql 锁详解

在互联网软件开发领域,MySQL作为一款广泛应用的关系型数据库管理系统,其锁机制在保障数据一致性和实现并发控制方面扮演着举足轻重的角色。对于互联网软件开发人员而言,深入理解MySQL的锁机制原理...

Java 与 MySQL 性能优化:MySQL分区表设计与性能优化全解析

引言在数据库管理领域,随着数据量的不断增长,如何高效地管理和操作数据成为了一个关键问题。MySQL分区表作为一种有效的数据管理技术,能够将大型表划分为多个更小、更易管理的分区,从而提升数据库的性能和可...

MySQL基础篇:DQL数据查询操作_mysql 查

一、基础查询DQL基础查询语法SELECT字段列表FROM表名列表WHERE条件列表GROUPBY分组字段列表HAVING分组后条件列表ORDERBY排序字段列表LIMIT...

MySql:索引的基本使用_mysql索引的使用和原理

一、索引基础概念1.什么是索引?索引是数据库表的特殊数据结构(通常是B+树),用于...