Node.js Stream - 实战篇(node.js 10实战)
wptr33 2025-05-05 19:04 24 浏览
本文转自 “美团点评技术团队”
http://tech.meituan.com/stream-in-action.html
背景
前面两篇(基础篇和进阶篇)主要介绍流的基本用法和原理,本篇从应用的角度,介绍如何使用管道进行程序设计,主要内容包括:
管道的概念
Browserify的管道设计
Gulp的管道设计
两种管道设计模式比较
实例
Pipeline
所谓“管道”,指的是通过a.pipe(b)
的形式连接起来的多个Stream对象的组合。
假如现在有两个Transform
:bold
和red
,分别可将文本流中某些关键字加粗和飘红。
可以按下面的方式对文本同时加粗和飘红:
// source: 输入流// dest: 输出目的地source.pipe(bold).pipe(red).pipe(dest)
bold.pipe(red)
便可以看作一个管道,输入流先后经过bold
和red
的变换再输出。
但如果这种加粗且飘红的功能的应用场景很广,我们期望的使用方式是:
// source: 输入流// dest: 输出目的地// pipeline: 加粗且飘红source.pipe(pipeline).pipe(dest)
此时,pipeline
封装了bold.pipe(red)
,从逻辑上来讲,也称其为管道。
其实现可简化为:
var pipeline = new Duplex()var streams = pipeline._streams = [bold, red]// 底层写逻辑:将数据写入管道的第一个Stream,即boldpipeline._write = function (buf, enc, next) {
streams[0].write(buf, enc, next)
}// 底层读逻辑:从管道的最后一个Stream(即red)中读取数据pipeline._read = function () { var buf var reads = 0
var r = streams[streams.length - 1] // 将缓存读空
while ((buf = r.read()) !== null) {
pipeline.push(buf)
reads++
} if (reads === 0) { // 缓存本来为空,则等待新数据的到来
r.once('readable', function () {
pipeline._read()
})
}
}// 将各个Stream组合起来(此处等同于`bold.pipe(red)`)streams.reduce(function (r, next) {
r.pipe(next) return next
})
往pipeline
写数据时,数据直接写入bold
,再流向red
,最后从pipeline
读数据时再从red
中读出。
如果需要在中间新加一个underline
的Stream,可以:
pipeline._streams.splice(1, 0, underline)
bold.unpipe(red)
bold.pipe(underline).pipe(red)
如果要将red
替换成green
,可以:
// 删除redpipeline._streams.pop()
bold.unpipe(red)// 添加
greenpipeline._streams.push(green)
bold.pipe(green)
可见,这种管道的各个环节是可以修改的。
stream-splicer对上述逻辑进行了进一步封装,提供splice
、push
、pop
等方法,使得pipeline
可以像数组那样被修改:
var splicer = require('stream-splicer')var pipeline = splicer([bold, red])// 在中间添加underlinepipeline.splice(1, 0, underline)// 删除redpipeline.pop()// 添加greenpipeline.push(green)
labeled-stream-splicer在此基础上又添加了使用名字替代下标进行操作的功能:
var splicer = require('labeled-stream-splicer')var pipeline = splicer([ 'bold', bold, 'red', red,
])// 在`red`前添加underlinepipeline.splice('red', 0, underline)// 删除`bold`pipeline.splice('bold', 1)
由于pipeline
本身与其各个环节一样,也是一个Stream对象,因此可以嵌套:
var splicer = require('labeled-stream-splicer')var pipeline = splicer([ 'style', [ bold, red ], 'insert', [ comma ],
])
pipeline.get('style') // 取得管道:[bold, red]
.splice(1, 0, underline) // 添加underline
Browserify
Browserify的功能介绍可见
substack/browserify-handbook,其核心逻辑的实现在于管道的设计:
var splicer = require('labeled-stream-splicer')var pipeline = splicer.obj([ // 记录输入管道的数据,重建管道时直接将记录的数据写入。
// 用于像watch时需要多次打包的情况
'record', [ this._recorder() ], // 依赖解析,预处理
'deps', [ this._mdeps ], // 处理JSON文件
'json', [ this._json() ], // 删除文件前面的BOM
'unbom', [ this._unbom() ], // 删除文件前面的`#!`行
'unshebang', [ this._unshebang() ], // 语法检查
'syntax', [ this._syntax() ], // 排序,以确保打包结果的稳定性
'sort', [ depsSort(dopts) ], // 对拥有同样内容的模块去重
'dedupe', [ this._dedupe() ], // 将id从文件路径转换成数字,避免暴露系统路径信息
'label', [ this._label(opts) ], // 为每个模块触发一次dep事件
'emit-deps', [ this._emitDeps() ], 'debug', [ this._debug(opts) ], // 将模块打包
'pack', [ this._bpack ], // 更多自定义的处理
'wrap', [],
])
每个模块用row
表示,定义如下:
{ // 模块的唯一标识
id: id, // 模块对应的文件路径
file: '/path/to/file', // 模块内容
source: '', // 模块的依赖
deps: { // `require(expr)`
expr: id,
}
}
在wrap
阶段前,所有的阶段都处理这样的对象流,且除pack
外,都输出这样的流。
有的补充row
中的一些信息,有的则对这些信息做一些变换,有的只是读取和输出。
一般row
中的source
、deps
内容都是在deps
阶段解析出来的。
下面提供一个修改Browserify管道的函数。
var Transform = require('stream').Transform// 创建Transform对象function through(write, end) { return Transform({
transform: write,
flush: end,
})
}// `b`为Browserify实例// 该插件可打印出打包时间function log(b) { // watch时需要重新打包,整个pipeline会被重建,所以也要重新修改
b.on('reset', reset) // 修改当前pipeline
reset() function reset () { var time = null
var bytes = 0
b.pipeline.get('record').on('end', function () { // 以record阶段结束为起始时刻
time = Date.now()
}) // `wrap`是最后一个阶段,在其后添加记录结束时刻的Transform
b.pipeline.get('wrap').push(through(write, end)) function write (buf, enc, next) { // 累计大小
bytes += buf.length this.push(buf)
next()
} function end () { // 打包时间
var delta = Date.now() - time
b.emit('time', delta)
b.emit('bytes', bytes)
b.emit('log', bytes + ' bytes written ('
+ (delta / 1000).toFixed(2) + ' seconds)'
) this.push(null)
}
}
}var fs = require('fs')var browserify = require('browserify')var b = browserify(opts)// 应用插件b.plugin(log)
b.bundle().pipe(fs.createWriteStream('bundle.js'))
事实上,这里的b.plugin(log)
就是直接执行了log(b)
。
在插件中,可以修改b.pipeline
中的任何一个环节。
因此,Browserify本身只保留了必要的功能,其它都由插件去实现,如watchify、factor-bundle等。
除了了上述的插件机制外,Browserify还有一套Transform机制,即通过b.transform(transform)
可以新增一些文件内容预处理的Transform。
预处理是发生在deps
阶段的,当模块文件内容被读出来时,会经过这些Transform处理,然后才做依赖解析,如babelify、envify。
Gulp
Gulp的核心逻辑分成两块:任务调度与文件处理。
任务调度是基于orchestrator,而文件处理则是基于vinyl-fs。
类似于Browserify提供的模块定义(用row
表示),vinyl-fs也提供了文件定义(vinyl对象)。
Browserify的管道处理的是row
流,Gulp管道处理vinyl流:
gulp.task('scripts', ['clean'], function() { // Minify and copy all JavaScript (except vendor scripts)
// with sourcemaps all the way down
return gulp.src(paths.scripts)
.pipe(sourcemaps.init())
.pipe(coffee())
.pipe(uglify())
.pipe(concat('all.min.js'))
.pipe(sourcemaps.write())
.pipe(gulp.dest('build/js'));
});
任务中创建的管道起始于gulp.src
,终止于gulp.dest
,中间有若干其它的Transform(插件)。
如果与Browserify的管道对比,可以发现Browserify是确定了一条具有完整功能的管道,而Gulp本身只提供了创建vinyl流和将vinyl流写入磁盘的工具,管道中间经历什么全由用户决定。
这是因为任务中做什么,是没有任何限制的,文件处理也只是常见的情况,并非一定要用gulp.src
与gulp.dest
。
两种模式比较
Browserify与Gulp都借助管道的概念来实现插件机制。
Browserify定义了模块的数据结构,提供了默认的管道以处理这样的数据流,而插件可用来修改管道结构,以定制处理行为。
Gulp虽也定义了文件的数据结构,但只提供产生、消耗这种数据流的接口,完全由用户通过插件去构造处理管道。
当明确具体的处理需求时,可以像Browserify那样,构造一个基本的处理管道,以提供插件机制。
如果需要的是实现任意功能的管道,可以如Gulp那样,只提供数据流的抽象。
实例
本节中实现一个针对Git仓库自动生成changelog的工具,完整代码见ezchangelog。
ezchangelog的输入为git log
生成的文本流,输出默认为markdown格式的文本流,但可以修改为任意的自定义格式。
输入示意:
commit 9c5829ce45567bedccda9beb7f5de17574ea9437
Author: zoubin <zoubin04@gmail.com>
Date: Sat Nov 7 18:42:35 2015 +0800
CHANGELOG
commit 3bf9055b732cc23a9c14f295ff91f48aed5ef31a
Author: zoubin <zoubin04@gmail.com>
Date: Sat Nov 7 18:41:37 2015 +0800
4.0.3
commit 87abe8e12374079f73fc85c432604642059806ae
Author: zoubin <zoubin04@gmail.com>
Date: Sat Nov 7 18:41:32 2015 +0800
fix readme
add more tests
输出示意:
* [[`9c5829c`](https://github.com/zoubin/ezchangelog/commit/9c5829c)] CHANGELOG## [v4.0.3](https://github.com/zoubin/ezchangelog/commit/3bf9055) (2015-11-07)* [[`87abe8e`](https://github.com/zoubin/ezchangelog/commit/87abe8e)] fix readme add more tests
其实需要的是这样一个pipeline
:
source.pipe(pipeline).pipe(dest)
可以分为两个阶段:
parse:从输入文本流中解析出commit信息
format: 将commit流变换为文本流
默认的情况下,要想得到示例中的markdown,需要解析出每个commit的sha1、日期、消息、是否为tag。
定义commit的格式如下:
{
commit: { // commit sha1
long: '3bf9055b732cc23a9c14f295ff91f48aed5ef31a',
short: '3bf9055',
},
committer: { // commit date
date: new Date('Sat Nov 7 18:41:37 2015 +0800'),
}, // raw message lines
messages: ['', ' 4.0.3', ''], // raw headers before the messages
headers: [
['Author', 'zoubin <zoubin04@gmail.com>'],
['Date', 'Sat Nov 7 18:41:37 2015 +0800'],
], // the first non-empty message line
subject: '4.0.3', // other message lines
body: '', // git tag
tag: 'v4.0.3', // link to the commit. opts.baseUrl should be specified.
url: 'https://github.com/zoubin/ezchangelog/commit/3bf9055',
}
于是有:
var splicer = require('labeled-stream-splicer')
pipeline = splicer.obj([ 'parse', [ // 按行分隔
'split', split(), // 生成commit对象,解析出sha1和日期
'commit', commit(), // 解析出tag
'tag', tag(), // 解析出url
'url', url({ baseUrl: opts.baseUrl }),
], 'format', [ // 将commit组合成markdown文本
'markdownify', markdownify(),
],
])
至此,基本功能已经实现。
现在将其封装并提供插件机制。
function Changelog(opts) {
opts = opts || {} this._options = opts // 创建pipeline
this.pipeline = splicer.obj([ 'parse', [ 'split', split(), 'commit', commit(), 'tag', tag(), 'url', url({ baseUrl: opts.baseUrl }),
], 'format', [ 'markdownify', markdownify(),
],
]) // 应用插件
;[].concat(opts.plugin).filter(Boolean).forEach(function (p) { this.plugin(p)
}, this)
}
Changelog.prototype.plugin = function (p, opts) { if (Array.isArray(p)) {
opts = p[1]
p = p[0]
} // 执行插件函数,修改pipeline
p(this, opts) return this}
上面的实现提供了两种方式来应用插件。
一种是通过配置传入,另一种是创建实例后再调用plugin
方法,本质一样。
为了使用方便,还可以简单封装一下。
function changelog(opts) { return new Changelog(opts).pipeline
}
这样,就可以如下方式使用:
source.pipe(changelog()).pipe(dest)
这个已经非常接近我们的预期了。
现在来开发一个插件,修改默认的渲染方式。
var through = require('through2')function customFormatter(c) { // c是`Changelog`实例
// 添加解析author的transform
c.pipeline.get('parse').push(through.obj(function (ci, enc, next) { // parse the author name from: 'zoubin <zoubin04@gmail.com>'
ci.committer.author = ci.headers[0][1].split(/\s+/)[0]
next(null, ci)
})) // 替换原有的渲染
c.pipeline.get('format').splice('markdownify', 1, through.obj(function (ci, enc, next) { var sha1 = ci.commit.short
sha1 = '[`' + sha1 + '`](' + c._options.baseUrl + sha1 + ')'
var date = ci.committer.date.toISOString().slice(0, 10)
next(null, '* ' + sha1 + ' ' + date + ' @' + ci.committer.author + '\n')
}))
}
source
.pipe(changelog({
baseUrl: 'https://github.com/zoubin/ezchangelog/commit/',
plugin: [customFormatter],
}))
.pipe(dest)
同样的输入,输出将会是:
* [`9c5829c`](https://github.com/zoubin/ezchangelog/commit/9c5829c) 2015-11-07 @zoubin* [`3bf9055`](https://github.com/zoubin/ezchangelog/commit/3bf9055) 2015-11-07 @zoubin* [`87abe8e`](https://github.com/zoubin/ezchangelog/commit/87abe8e) 2015-11-07 @zoubin
可以看出,通过创建可修改的管道,ezchangelog保持了本身逻辑的单一性,同时又提供了强大的自定义空间。
参考文献
GitHub,substack/browserify-handbook
GitHub,zoubin/streamify-your-node-program
查看更多技术类文章,请关注微信公众号:美团点评技术团队。
相关推荐
- MySQL进阶五之自动读写分离mysql-proxy
-
自动读写分离目前,大量现网用户的业务场景中存在读多写少、业务负载无法预测等情况,在有大量读请求的应用场景下,单个实例可能无法承受读取压力,甚至会对业务产生影响。为了实现读取能力的弹性扩展,分担数据库压...
- 3分钟短文 | Laravel SQL筛选两个日期之间的记录,怎么写?
-
引言今天说一个细分的需求,在模型中,或者使用laravel提供的EloquentORM功能,构造查询语句时,返回位于两个指定的日期之间的条目。应该怎么写?本文通过几个例子,为大家梳理一下。学习时...
- 一文由浅入深带你完全掌握MySQL的锁机制原理与应用
-
本文将跟大家聊聊InnoDB的锁。本文比较长,包括一条SQL是如何加锁的,一些加锁规则、如何分析和解决死锁问题等内容,建议耐心读完,肯定对大家有帮助的。为什么需要加锁呢?...
- 验证Mysql中联合索引的最左匹配原则
-
后端面试中一定是必问mysql的,在以往的面试中好几个面试官都反馈我Mysql基础不行,今天来着重复习一下自己的弱点知识。在Mysql调优中索引优化又是非常重要的方法,不管公司的大小只要后端项目中用到...
- MySQL索引解析(联合索引/最左前缀/覆盖索引/索引下推)
-
目录1.索引基础...
- 你会看 MySQL 的执行计划(EXPLAIN)吗?
-
SQL执行太慢怎么办?我们通常会使用EXPLAIN命令来查看SQL的执行计划,然后根据执行计划找出问题所在并进行优化。用法简介...
- MySQL 从入门到精通(四)之索引结构
-
索引概述索引(index),是帮助MySQL高效获取数据的数据结构(有序),在数据之外,数据库系统还维护者满足特定查询算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构...
- mysql总结——面试中最常问到的知识点
-
mysql作为开源数据库中的榜一大哥,一直是面试官们考察的重中之重。今天,我们来总结一下mysql的知识点,供大家复习参照,看完这些知识点,再加上一些边角细节,基本上能够应付大多mysql相关面试了(...
- mysql总结——面试中最常问到的知识点(2)
-
首先我们回顾一下上篇内容,主要复习了索引,事务,锁,以及SQL优化的工具。本篇文章接着写后面的内容。性能优化索引优化,SQL中索引的相关优化主要有以下几个方面:最好是全匹配。如果是联合索引的话,遵循最...
- MySQL基础全知全解!超详细无废话!轻松上手~
-
本期内容提醒:全篇2300+字,篇幅较长,可搭配饭菜一同“食”用,全篇无废话(除了这句),干货满满,可收藏供后期反复观看。注:MySQL中语法不区分大小写,本篇中...
- 深入剖析 MySQL 中的锁机制原理_mysql 锁详解
-
在互联网软件开发领域,MySQL作为一款广泛应用的关系型数据库管理系统,其锁机制在保障数据一致性和实现并发控制方面扮演着举足轻重的角色。对于互联网软件开发人员而言,深入理解MySQL的锁机制原理...
- Java 与 MySQL 性能优化:MySQL分区表设计与性能优化全解析
-
引言在数据库管理领域,随着数据量的不断增长,如何高效地管理和操作数据成为了一个关键问题。MySQL分区表作为一种有效的数据管理技术,能够将大型表划分为多个更小、更易管理的分区,从而提升数据库的性能和可...
- MySQL基础篇:DQL数据查询操作_mysql 查
-
一、基础查询DQL基础查询语法SELECT字段列表FROM表名列表WHERE条件列表GROUPBY分组字段列表HAVING分组后条件列表ORDERBY排序字段列表LIMIT...
- MySql:索引的基本使用_mysql索引的使用和原理
-
一、索引基础概念1.什么是索引?索引是数据库表的特殊数据结构(通常是B+树),用于...
- 一周热门
-
-
C# 13 和 .NET 9 全知道 :13 使用 ASP.NET Core 构建网站 (1)
-
程序员的开源月刊《HelloGitHub》第 71 期
-
详细介绍一下Redis的Watch机制,可以利用Watch机制来做什么?
-
假如有100W个用户抢一张票,除了负载均衡办法,怎么支持高并发?
-
如何将AI助手接入微信(打开ai手机助手)
-
Java面试必考问题:什么是乐观锁与悲观锁
-
SparkSQL——DataFrame的创建与使用
-
redission YYDS spring boot redission 使用
-
一文带你了解Redis与Memcached? redis与memcached的区别
-
如何利用Redis进行事务处理呢? 如何利用redis进行事务处理呢英文
-
- 最近发表
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)
- c语言 switch (34)
- git commit (34)