Chainer-GAN库发布,利用Chainer实现多种GAN算法及特征匹配去噪
wptr33 2025-05-24 17:32 16 浏览
原文来源:GitHub、Arxiv
「机器人圈」编译:嗯~阿童木呀、BaymaxZ
Chainer是一个基于Python的深度学习框架。它基于动态计算图以及面向对象的高级API,以构建并训练神经网络,提供自动微分API。它还支持CUDA / cuDNN使用CuPy进行高性能训练。
Chainer-GAN库汇集了当前最高水准的基于Chainer实现的GAN算法;
这些代码已在Cifar-10数据集中,使用inceptionscore进行过评估;
请注意,代码在基于原论文的基础上做了些许修改。
如何使用?
首先要阅读安装要求:
pip install -r requirements.txt
此实现已通过以下版本进行测试。
python 3.5.2
从
https://github.com/hvy/chainer-inception-score中可获得inception score模块,下文将进行详细解读。
git submodule update -i
下载inception模型。
cd common/inception
你可以使用train.py开始进行训练。
python train.py --gpu 0 --algorithm dcgan --out result_dcgan
请参阅example.sh来训练其他算法。
定量评估
Inception scores是通过对5000个样本进行10次平均评估得到的。
FID是通过对5000个训练数据集和10000个生成样本进行计算的。
生成的图像
WGAN-GP
DFM
Cramer GAN
DRGAN
DCGAN
Minibatch discrimination
BEGAN
Inception Score
Inception score模块的Chainer实现发布于《训练生成对抗网络的技术改进》(ImprovedTechniques for Training GANs)这篇论文中。代码源自OpenAI的官方开源代码(
https://github.com/openai/improved-gan)。
Inception Score是OpenAI的Tim Salimans、GANs之父IanGoodfellow等人2016年在上述论文中提出的一种方法,使用预训练的分类器网络和采样图像,评估诸如VAE和GAN之类的生成式模型。
这正是基于以下事实:良好的样本(图像看起来像来自真实数据分布的图像)预计会产生:
低熵p(y|x),即高预测置信度
高熵p(y),即高度变化的预测
其中x是图像,p(y|x)是预先训练的Inception网络给出的x的推断类标签概率,p(y)是所有图像上的边际分布。
Inception Score的定义为exp(E_x[KL(p(y|x)|| p(y))])
用法
下载预先训练好的TensorFlow模型并创建一个名为inception_score.model的Chainer副本。
python download.py --outfile inception_score.model
加载预先训练的Chainer模型,并计算包括训练图像和测试图像在内的CIFAR-10数据集的inception score。为了限制图像的数量,请使用--samples 选项。
python example.py --model inception_score.model
...
在Python中的使用示例
import numpy as npfrom chainer import serializers, datasetsfrom inception_score import Inception, inception_score
注意
从inception score的得分情况来看,该实现相较于原来的基于CIFAR-10,使用双线性插值从(32,32)到(299,299)上采样的分数要高得多。
《训练生成对抗网络的技术改进》
Inception score模块的Chainer实现发布于《训练生成对抗网络的技术改进》这篇论文中,科研人员提出了将应用于生成对抗网络(GAN)框架的各种新的架构特征和训练程序。他们专注于GAN的两个应用:半监督学习,以及人类视觉逼真意义上的图像生成。与大多数生成模型的工作不同,其主要目标不是训练一个分配高相似性以测试数据的模型,也不要求模型能够在不使用任何标签的情况下进行学习。
使用这些新技术后,科研人员在MNIST、CIFAR-10和SVHN的半监督分类中获得了可喜成果。所产生的图像具有已通过视觉图灵测试证实的高质量:该模型可以生成人类无法从实际数据中区分的MNIST样本,以及生成人为错误率为21.3%的CIFAR-10样本。我们还以前所未有的分辨率呈现除出了ImageNet样本,并显示该方法使模型能够学习到ImageNet等级的可识别特征。
在该论文中,科研人员推出了几种旨在鼓励GAN融合的技术,这些技术是从对非收敛问题的理解中获得灵感的。这使得半监督学习实现性能的提升和样本生成的改进。
更多信息可点击链接获取完整论文(
https://arxiv.org/pdf/1606.03498.pdf)
开源代码获取:
https://github.com/pfnet-research/chainer-gan-lib/blob/master/README.md
相关推荐
- MySQL进阶五之自动读写分离mysql-proxy
-
自动读写分离目前,大量现网用户的业务场景中存在读多写少、业务负载无法预测等情况,在有大量读请求的应用场景下,单个实例可能无法承受读取压力,甚至会对业务产生影响。为了实现读取能力的弹性扩展,分担数据库压...
- 3分钟短文 | Laravel SQL筛选两个日期之间的记录,怎么写?
-
引言今天说一个细分的需求,在模型中,或者使用laravel提供的EloquentORM功能,构造查询语句时,返回位于两个指定的日期之间的条目。应该怎么写?本文通过几个例子,为大家梳理一下。学习时...
- 一文由浅入深带你完全掌握MySQL的锁机制原理与应用
-
本文将跟大家聊聊InnoDB的锁。本文比较长,包括一条SQL是如何加锁的,一些加锁规则、如何分析和解决死锁问题等内容,建议耐心读完,肯定对大家有帮助的。为什么需要加锁呢?...
- 验证Mysql中联合索引的最左匹配原则
-
后端面试中一定是必问mysql的,在以往的面试中好几个面试官都反馈我Mysql基础不行,今天来着重复习一下自己的弱点知识。在Mysql调优中索引优化又是非常重要的方法,不管公司的大小只要后端项目中用到...
- MySQL索引解析(联合索引/最左前缀/覆盖索引/索引下推)
-
目录1.索引基础...
- 你会看 MySQL 的执行计划(EXPLAIN)吗?
-
SQL执行太慢怎么办?我们通常会使用EXPLAIN命令来查看SQL的执行计划,然后根据执行计划找出问题所在并进行优化。用法简介...
- MySQL 从入门到精通(四)之索引结构
-
索引概述索引(index),是帮助MySQL高效获取数据的数据结构(有序),在数据之外,数据库系统还维护者满足特定查询算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构...
- mysql总结——面试中最常问到的知识点
-
mysql作为开源数据库中的榜一大哥,一直是面试官们考察的重中之重。今天,我们来总结一下mysql的知识点,供大家复习参照,看完这些知识点,再加上一些边角细节,基本上能够应付大多mysql相关面试了(...
- mysql总结——面试中最常问到的知识点(2)
-
首先我们回顾一下上篇内容,主要复习了索引,事务,锁,以及SQL优化的工具。本篇文章接着写后面的内容。性能优化索引优化,SQL中索引的相关优化主要有以下几个方面:最好是全匹配。如果是联合索引的话,遵循最...
- MySQL基础全知全解!超详细无废话!轻松上手~
-
本期内容提醒:全篇2300+字,篇幅较长,可搭配饭菜一同“食”用,全篇无废话(除了这句),干货满满,可收藏供后期反复观看。注:MySQL中语法不区分大小写,本篇中...
- 深入剖析 MySQL 中的锁机制原理_mysql 锁详解
-
在互联网软件开发领域,MySQL作为一款广泛应用的关系型数据库管理系统,其锁机制在保障数据一致性和实现并发控制方面扮演着举足轻重的角色。对于互联网软件开发人员而言,深入理解MySQL的锁机制原理...
- Java 与 MySQL 性能优化:MySQL分区表设计与性能优化全解析
-
引言在数据库管理领域,随着数据量的不断增长,如何高效地管理和操作数据成为了一个关键问题。MySQL分区表作为一种有效的数据管理技术,能够将大型表划分为多个更小、更易管理的分区,从而提升数据库的性能和可...
- MySQL基础篇:DQL数据查询操作_mysql 查
-
一、基础查询DQL基础查询语法SELECT字段列表FROM表名列表WHERE条件列表GROUPBY分组字段列表HAVING分组后条件列表ORDERBY排序字段列表LIMIT...
- MySql:索引的基本使用_mysql索引的使用和原理
-
一、索引基础概念1.什么是索引?索引是数据库表的特殊数据结构(通常是B+树),用于...
- 一周热门
-
-
C# 13 和 .NET 9 全知道 :13 使用 ASP.NET Core 构建网站 (1)
-
程序员的开源月刊《HelloGitHub》第 71 期
-
详细介绍一下Redis的Watch机制,可以利用Watch机制来做什么?
-
假如有100W个用户抢一张票,除了负载均衡办法,怎么支持高并发?
-
如何将AI助手接入微信(打开ai手机助手)
-
Java面试必考问题:什么是乐观锁与悲观锁
-
SparkSQL——DataFrame的创建与使用
-
redission YYDS spring boot redission 使用
-
一文带你了解Redis与Memcached? redis与memcached的区别
-
如何利用Redis进行事务处理呢? 如何利用redis进行事务处理呢英文
-
- 最近发表
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)
- c语言 switch (34)
- git commit (34)