MATLAB二分法求方程的根(实例加程序)
wptr33 2025-05-28 20:48 30 浏览
零点的存在性定理
早在高中阶段,我们就学习过函数的零点存在性定理。简单地说,对于区间[a,b]上的连续函数f(x),如果满足f(a)f(b)<=0,那么函数在[a,b]上至少存在一个零点。
根据函数与方程的关系我们可以得到,对于相应的方程f(x)=0。如果方程的左侧在a,b处不同号,那么,方程在[a,b]上存在零点。
二分法的思想
在得到根的存在性之后,我们就希望找到或者逼近方程的根。这种情况下比较显然的一种方式就是二分法。二分法的基本步骤如下:
实例1
程序
clc;
clear all;
close all;
Re = 1e4;%赋值Re的值
C = 0.57;%%赋值C的值
%第二问程序
f= @(beta) 0.5959+0.0312.*beta.^(2.1)-0.184*beta.^8+(91.71.*beta.^(2.5)./(Re^0.75))-C;%设置目标函数
a =0.9;%赋值a
b = 1;%赋值b
eps = 1e-6;%赋值eps
T = bisect(f,a,b,eps);%调用函数
data = [T(:,6) T(:,end)+C T(:,end)]; %输出求解的beta C error
save('data93552.txt','data','-ascii');
function T = bisect(f,a,b,eps)
%%
%输入
%f代表输入的函数 a,b代表区间范围[a,b],eps是输入的误差
%T代表输出的参数
%包括迭代次数 左区间a a点函数值 右区间b b点函数值 区间a和b的中点值xk xk点函数值
%%
k=1%设置初始值
x=(a+b)/2;%设置初始区间中点
fprintf(' k a f(a) b f(b) xk f(xk)\n ');%输出变量的名字
T=[k,a,f(a),b,f(b),x,f(x)];%对T赋值
while abs(T(k,4)-T(k,6))>eps/2 %判断和误差的大小
k=k+1;%循环计数
if f(x)*f(a)==0 %判断当函数值为0的时候
a=a;%左区间重新赋值
b=x;%右区间重新赋值
x=(a+b)/2;%区间中点重新赋值
T=[T;k,a,f(a),b,f(b),x,f(x)];%对T赋值
break
elseif f(x)*f(a)>0 %判断当f(x)和f(a)同号的情况
a=x;%左区间重新赋值
b=b;%右区间重新赋值
x=(a+b)/2;%区间中点重新赋值
T=[T;k,a,f(a),b,f(b),x,f(x)];%对T赋值
elseif f(x)*f(a)<0 %判断当f(x)和f(a)异号的情况
a=a;%左区间重新赋值
b=x;%右区间重新赋值
x=(a+b)/2;%区间中点重新赋值
T=[T;k,a,f(a),b,f(b),x,f(x)];%对T赋值
end
end
disp(T);%输出变量T
fprintf('经过%d次迭代,函数方程根的近似解为:x=%.8f\n',k-1,T(k-1,6))%输出迭代过程
error = T(:,7);%误差
figure;%新建一个窗口
plot(1:k,error,'r');%画图
xlabel('k');%设置横轴坐标
ylabel('error value');%设置纵轴坐标
end运行结果
结果:
k =
1
k a f(a) b f(b) xk f(xk)
1.0000 0.9000 0.0422 1.0000 -0.0352 0.9500 0.0125
2.0000 0.9500 0.0125 1.0000 -0.0352 0.9750 -0.0087
3.0000 0.9500 0.0125 0.9750 -0.0087 0.9625 0.0025
4.0000 0.9625 0.0025 0.9750 -0.0087 0.9688 -0.0029
5.0000 0.9625 0.0025 0.9688 -0.0029 0.9656 -0.0002
6.0000 0.9625 0.0025 0.9656 -0.0002 0.9641 0.0012
7.0000 0.9641 0.0012 0.9656 -0.0002 0.9648 0.0005
8.0000 0.9648 0.0005 0.9656 -0.0002 0.9652 0.0002
9.0000 0.9652 0.0002 0.9656 -0.0002 0.9654 0.0000
10.0000 0.9654 0.0000 0.9656 -0.0002 0.9655 -0.0001
11.0000 0.9654 0.0000 0.9655 -0.0001 0.9655 -0.0000
12.0000 0.9654 0.0000 0.9655 -0.0000 0.9655 -0.0000
13.0000 0.9654 0.0000 0.9655 -0.0000 0.9654 -0.0000
14.0000 0.9654 0.0000 0.9654 -0.0000 0.9654 -0.0000
15.0000 0.9654 0.0000 0.9654 -0.0000 0.9654 0.0000
16.0000 0.9654 0.0000 0.9654 -0.0000 0.9654 0.0000
17.0000 0.9654 0.0000 0.9654 -0.0000 0.9654 -0.0000
18.0000 0.9654 0.0000 0.9654 -0.0000 0.9654 -0.0000
经过17次迭代,函数方程根的近似解为:x=0.96543503
实例2
程序
clc;
clear all;
close all;
syms U L; %将区间上下限定为变量
f=@(x) exp(x)-x^2+3*x-2; %求给定的函数
U=1;
L=0;
while U-L>1e-10 %设定精度
root=(U+L)/2; %当根的区间大于所给精度时,利用二分法重新规划求根区间
if f(root)==0
break; %r恰好为所求根,直接跳出循环
end
if f(root)*f(U)<0 %用零点存在定理判断根所在的区域
L=root;
else
U=root;
end
end
root
%结果 root =0.2575运行结果
%结果 root =0.2575实例3
程序
clc;
clear all;
close all;
% -------------- inputs -------------------
f = @(x) 3*x^2-x-3;
a = 0;
b = 2;
% tolerance / max iter
TOL = 1e-4; NI = 50;
% -------------------------------------------------------
% STEP 1: initialization
i = 1;
fa = f(a);
converge = false; % convergence flag
% STEP 2: iteration
while i<=NI
% STEP 3: compute p at the i's step
p = a+(b-a)/2;
fp = f(p);
% STEP 4: check if meets the stopping criteria
if (abs(fp)<eps || (b-a)/2 < TOL) % eps is Matlab-machine zero
converge = true; % bisection method converged!
break; % exit out of while loop
else
% STEP 5
i = i+1;
% STEP 6
if fa*fp > 0
a = p; fa = fp;
else
b = p;
end
end
end
b
f(b)
运行结果
b =
1.1805
ans =
4.9619e-04实例4
clc;
clear all;
close all;
a = 1;
b = 1.5;
tol = 1e-8;
x = half(a, b, tol)
function x = half(a, b, tol)% tol 是 tolerance 的缩写,表示绝对误差
c = (a + b) / 2; k = 1;
m = 1 + round((log(b - a) - log(2 * tol)) / log(2)); % <1>
while k <= m
if f(c) == 0
c = c;
return;
elseif f(a) * f(c) < 0
b = (a + b) / 2;
else
a = (a + b) / 2;
end
c = (a + b) / 2; k = k + 1;
end
x = c; % 这里加分号是为了不再命令行中输出
k % 不加分号就会在控制台输出
c
end
function y = f(x)
y = x^3 - x -1;
end运行结果
k =
27
c =
1.3247
x =
1.3247
>> 本文内容来源于网络,仅供参考学习,如内容、图片有任何版权问题,请联系处理,24小时内删除。
作 者 | 郭志龙
编 辑 | 郭志龙
校 对 | 郭志龙
- 上一篇:优化算法matlab大杀器 —— 实现秃鹰算法
- 下一篇:MATLAB机器学习工具箱
相关推荐
- oracle数据导入导出_oracle数据导入导出工具
-
关于oracle的数据导入导出,这个功能的使用场景,一般是换服务环境,把原先的oracle数据导入到另外一台oracle数据库,或者导出备份使用。只不过oracle的导入导出命令不好记忆,稍稍有点复杂...
- 继续学习Python中的while true/break语句
-
上次讲到if语句的用法,大家在微信公众号问了小编很多问题,那么小编在这几种解决一下,1.else和elif是子模块,不能单独使用2.一个if语句中可以包括很多个elif语句,但结尾只能有一个else解...
- python continue和break的区别_python中break语句和continue语句的区别
-
python中循环语句经常会使用continue和break,那么这2者的区别是?continue是跳出本次循环,进行下一次循环;break是跳出整个循环;例如:...
- 简单学Python——关键字6——break和continue
-
Python退出循环,有break语句和continue语句两种实现方式。break语句和continue语句的区别:break语句作用是终止循环。continue语句作用是跳出本轮循环,继续下一次循...
- 2-1,0基础学Python之 break退出循环、 continue继续循环 多重循
-
用for循环或者while循环时,如果要在循环体内直接退出循环,可以使用break语句。比如计算1至100的整数和,我们用while来实现:sum=0x=1whileTrue...
- Python 中 break 和 continue 傻傻分不清
-
大家好啊,我是大田。今天分享一下break和continue在代码中的执行效果是什么,进一步区分出二者的区别。一、continue例1:当小明3岁时不打印年龄,其余年龄正常循环打印。可以看...
- python中的流程控制语句:continue、break 和 return使用方法
-
Python中,continue、break和return是控制流程的关键语句,用于在循环或函数中提前退出或跳过某些操作。它们的用途和区别如下:1.continue(跳过当前循环的剩余部分,进...
- L017:continue和break - 教程文案
-
continue和break在Python中,continue和break是用于控制循环(如for和while)执行流程的关键字,它们的作用如下:1.continue:跳过当前迭代,...
- 作为前端开发者,你都经历过怎样的面试?
-
已经裸辞1个月了,最近开始投简历找工作,遇到各种各样的面试,今天分享一下。其实在职的时候也做过面试官,面试官时,感觉自己问的问题很难区分候选人的能力,最好的办法就是看看候选人的github上的代码仓库...
- 面试被问 const 是否不可变?这样回答才显功底
-
作为前端开发者,我在学习ES6特性时,总被const的"善变"搞得一头雾水——为什么用const声明的数组还能push元素?为什么基本类型赋值就会报错?直到翻遍MDN文档、对着内存图反...
- 2023金九银十必看前端面试题!2w字精品!
-
导文2023金九银十必看前端面试题!金九银十黄金期来了想要跳槽的小伙伴快来看啊CSS1.请解释CSS的盒模型是什么,并描述其组成部分。答案:CSS的盒模型是用于布局和定位元素的概念。它由内容区域...
- 前端面试总结_前端面试题整理
-
记得当时大二的时候,看到实验室的学长学姐忙于各种春招,有些收获了大厂offer,有些还在苦苦面试,其实那时候的心里还蛮忐忑的,不知道自己大三的时候会是什么样的一个水平,所以从19年的寒假放完,大二下学...
- 由浅入深,66条JavaScript面试知识点(七)
-
作者:JakeZhang转发链接:https://juejin.im/post/5ef8377f6fb9a07e693a6061目录由浅入深,66条JavaScript面试知识点(一)由浅入深,66...
- 2024前端面试真题之—VUE篇_前端面试题vue2020及答案
-
添加图片注释,不超过140字(可选)1.vue的生命周期有哪些及每个生命周期做了什么?beforeCreate是newVue()之后触发的第一个钩子,在当前阶段data、methods、com...
- 今年最常见的前端面试题,你会做几道?
-
在面试或招聘前端开发人员时,期望、现实和需求之间总是存在着巨大差距。面试其实是一个交流想法的地方,挑战人们的思考方式,并客观地分析给定的问题。可以通过面试了解人们如何做出决策,了解一个人对技术和解决问...
- 一周热门
- 最近发表
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)
- c语言 switch (34)
- git commit (34)
