百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT技术 > 正文

MATLAB的牛顿法求多元函数的极值程序加实例

wptr33 2025-06-09 00:39 12 浏览

今天主要是讲解MATLAB的牛顿法求多元函数的极值程序加实例。


实例1

求f(x,y)= sin(x^2+y^2)*exp(-0.1*(x^2+y^2+x*y+2*x)),在-2<=x<=2,-2<=y<=2上的极值点和极值。

主程序

clc;
clear all;
close all;
syms x y;%定义函数变量 x y
f = sin(x^2+y^2)*exp(-0.1*(x^2+y^2+x*y+2*x));
x0 = [1 1];%初始点 x0(1,1)
[x_best,f_best] = Newton(f,x0,[x y]);
x_best
f_best = vpa(f_best)
x = -2:0.01:2;
y = x;
[X,Y] = meshgrid(x,y);
F = sin(X.^2+Y.^2)*exp(-0.1*(X.^2+Y.^2+X.*Y+2.*X));
figure;
mesh(X,Y,F);
xlabel('x');
ylabel('y');
zlabel('z');

牛顿法函数

function [x_best,f_best] = Newton(f,x0,x,epsilon)
%% 牛顿法求解函数的最小值(极小值)
%% 输入
%   f:目标函数
%   x0:初始点
%   x:自变量向量
%   epsilon:精度
%% 输出
%   x_bes:目标函数取最小值时的自变量值
%   f_best:目标函数的最小值
format long;%改变数据显示格式
if nargin == 3  %默认的精度
    epsilon = 1.0e-6;
end
x0 = transpose(x0);%transpose函数的功能是转置向量或矩阵
x = transpose(x);%transpose函数的功能是转置向量或矩阵
g1f = jacobian(f,x);% jacobian求解向量函数的雅可比矩阵式 
g2f = jacobian(g1f,x);% jacobian求解向量函数的雅可比矩阵式 
% 参数初始化
grad_fxk = 1;
k = 0;
xk = x0;


while norm(grad_fxk) > epsilon  %   计算矩阵 (向量) X的2-范数
    grad_fxk  = subs(g1f,x,xk);%   计算矩阵 (向量) 雅可比矩阵式在xk处的值
    grad2_fxk = subs(g2f,x,xk);
    pk = -inv(grad2_fxk)*transpose(grad_fxk);  % 步长
    pk = double(pk);%转化为双精度浮点类型
    xk_next = xk + pk; %  
    xk = xk_next;
    k = k + 1;
    f_1 = subs(f,x,xk);%计算函数值
    %输出迭代结果
    fprintf('迭代次数:%d  误差:%.20f 极值点:(x,y) = (%f,%f) 极值:f(x,y) = %.20f\n',k,vpa(norm(grad_fxk)),xk(1),xk(2),vpa(f_1));
end
%输出极值点和极值
x_best = xk_next;
f_best = subs(f,x,x_best);
end

运行结果

迭代次数:1  误差:1.02885710610701086587 极值点:(x,y) = (0.669084,0.966374) 极值:f(x,y) = 0.70142228466448164337
迭代次数:2  误差:0.14448082736806977522 极值点:(x,y) = (1.195944,0.595077) 极值:f(x,y) = 0.59942448686119498280
迭代次数:3  误差:0.67873695620313101440 极值点:(x,y) = (1.032695,0.554239) 极值:f(x,y) = 0.65658602325338621952
迭代次数:4  误差:0.03278835230868389766 极值点:(x,y) = (1.077563,0.457762) 极值:f(x,y) = 0.65569150404015985600
迭代次数:5  误差:0.01819636638003245543 极值点:(x,y) = (1.069052,0.464828) 极值:f(x,y) = 0.65572832791085189363
迭代次数:6  误差:0.00027874333536557117 极值点:(x,y) = (1.069330,0.464057) 极值:f(x,y) = 0.65572826847418552720
迭代次数:7  误差:0.00000108627104183494 极值点:(x,y) = (1.069329,0.464058) 极值:f(x,y) = 0.65572826847430654151
迭代次数:8  误差:0.00000000000108544724 极值点:(x,y) = (1.069329,0.464058) 极值:f(x,y) = 0.65572826847430654151


x_best =


   1.069329230413560
   0.464057718471801


 
f_best =
 
0.65572826847430659287489727298377

实例2

求f(x,y)= 4*(x-y)-x^2-y^2,在-2<=x<=2,-2<=y<=2上的极值点和极值。

主程序

clc;
clear all;
close all;
syms x y;%定义函数变量 x y
fx = 4*(x-y)-x^2-y^2;%定义二元变量函数
x0 = [1 1];%初始点 x0(1,1)
[x_best,f_best] = Newton(fx,x0,[x y]);
x_best
f_best = vpa(f_best)
x = -2:0.1:2;
y = x;
[X,Y] = meshgrid(x,y);
F =  4.*(X-Y)-X.^2-Y.^2;
figure;
mesh(X,Y,F);
xlabel('x');
ylabel('y');
zlabel('z');

运行结果

迭代次数:1  误差:6.32455532033675904557 极值点:(x,y) = (2.000000,-2.000000) 极值:f(x,y) = 8.00000000000000000000
迭代次数:2  误差:0.00000000000000000000 极值点:(x,y) = (2.000000,-2.000000) 极值:f(x,y) = 8.00000000000000000000


x_best =


     2
    -2


 
f_best =
 
8.0

实例3

求f(x,y)= (1-x)^2+100*(y-x^2)^2,在-2<=x<=2,-2<=y<=2上的极值点和极值。

主程序

clc;
clear all;
close all;
syms x y;%定义函数变量 x y
f = (1-x)^2+100*(y-x^2)^2;
x0 = [0 0];%初始点 x0(1,1)
[x_best,f_best] = Newton(f,x0,[x y]);
x_best
f_best = vpa(f_best)
x = -2:0.1:2;
y = x;
[X,Y] = meshgrid(x,y);
F = (1-X).^2+100.*(Y-X.^2).^2;
figure;
mesh(X,Y,F);
xlabel('x');
ylabel('y');
zlabel('z');

运行结果

迭代次数:1  误差:2.00000000000000000000 极值点:(x,y) = (1.000000,0.000000) 极值:f(x,y) = 100.00000000000000000000
迭代次数:2  误差:447.21359549995793258859 极值点:(x,y) = (1.000000,1.000000) 极值:f(x,y) = 0.00000000000000000000
迭代次数:3  误差:0.00000000000000000000 极值点:(x,y) = (1.000000,1.000000) 极值:f(x,y) = 0.00000000000000000000


x_best =


     1
     1


 
f_best =
 
0.0

实例4

主程序

clc;
clear all;
close all;
syms x;
f =  9.*x.^2-sin(x)-1;
[x_optimization,y] = Newton_Method(f,2);
x_optimization = double(x_optimization);
y =vpa(y)
x_optimization
x = -10:0.01:10;
ft = 9.*x.^2-sin(x)-1;
figure(1)
plot(x,ft);
hold on;
plot(x_optimization,y,'r*');

Newton_Method函数程序

function [x_optimization,f_optimization] = Newton_Method(f,x0)
format long;
%   f:目标函数
%   x0:初始点
%   epsilon:精度
%   x_optimization:目标函数取最小值时的自变量值
%   f_optimization:目标函数的最小值
if nargin == 2
    epsilon = 1.0e-6;
end
df = diff(f);       %   一阶导数
d2f = diff(df);     %   二阶导数
k = 0;
dfxk = 1;
xk = x0;
while dfxk > epsilon
    dfx = subs(df,symvar(df),xk);
    if diff(d2f) == 0
        d2fx = double(d2f);     % 二阶导数不能为零
    else
        d2fx = subs(d2f,symvar(d2f),xk); 
    end
    xk_next = xk - dfx/d2fx;    
    k = k + 1;                  
    dfxk = abs(dfx);
    xk = xk_next;   %   迭代
end


x_optimization = xk_next;
f_optimization = subs(f,symvar(f),x_optimization);
format short;
end

运行结果

 
y =
 
-1.0277492701423876507411151284973
 


x_optimization =


    0.0555

本文内容来源于网络,仅供参考学习,如内容、图片有任何版权问题,请联系处理,24小时内删除。


作 者 | 郭志龙

编 辑 | 郭志龙
校 对 | 郭志龙

相关推荐

MySQL进阶五之自动读写分离mysql-proxy

自动读写分离目前,大量现网用户的业务场景中存在读多写少、业务负载无法预测等情况,在有大量读请求的应用场景下,单个实例可能无法承受读取压力,甚至会对业务产生影响。为了实现读取能力的弹性扩展,分担数据库压...

Postgres vs MySQL_vs2022连接mysql数据库

...

3分钟短文 | Laravel SQL筛选两个日期之间的记录,怎么写?

引言今天说一个细分的需求,在模型中,或者使用laravel提供的EloquentORM功能,构造查询语句时,返回位于两个指定的日期之间的条目。应该怎么写?本文通过几个例子,为大家梳理一下。学习时...

一文由浅入深带你完全掌握MySQL的锁机制原理与应用

本文将跟大家聊聊InnoDB的锁。本文比较长,包括一条SQL是如何加锁的,一些加锁规则、如何分析和解决死锁问题等内容,建议耐心读完,肯定对大家有帮助的。为什么需要加锁呢?...

验证Mysql中联合索引的最左匹配原则

后端面试中一定是必问mysql的,在以往的面试中好几个面试官都反馈我Mysql基础不行,今天来着重复习一下自己的弱点知识。在Mysql调优中索引优化又是非常重要的方法,不管公司的大小只要后端项目中用到...

MySQL索引解析(联合索引/最左前缀/覆盖索引/索引下推)

目录1.索引基础...

你会看 MySQL 的执行计划(EXPLAIN)吗?

SQL执行太慢怎么办?我们通常会使用EXPLAIN命令来查看SQL的执行计划,然后根据执行计划找出问题所在并进行优化。用法简介...

MySQL 从入门到精通(四)之索引结构

索引概述索引(index),是帮助MySQL高效获取数据的数据结构(有序),在数据之外,数据库系统还维护者满足特定查询算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构...

mysql总结——面试中最常问到的知识点

mysql作为开源数据库中的榜一大哥,一直是面试官们考察的重中之重。今天,我们来总结一下mysql的知识点,供大家复习参照,看完这些知识点,再加上一些边角细节,基本上能够应付大多mysql相关面试了(...

mysql总结——面试中最常问到的知识点(2)

首先我们回顾一下上篇内容,主要复习了索引,事务,锁,以及SQL优化的工具。本篇文章接着写后面的内容。性能优化索引优化,SQL中索引的相关优化主要有以下几个方面:最好是全匹配。如果是联合索引的话,遵循最...

MySQL基础全知全解!超详细无废话!轻松上手~

本期内容提醒:全篇2300+字,篇幅较长,可搭配饭菜一同“食”用,全篇无废话(除了这句),干货满满,可收藏供后期反复观看。注:MySQL中语法不区分大小写,本篇中...

深入剖析 MySQL 中的锁机制原理_mysql 锁详解

在互联网软件开发领域,MySQL作为一款广泛应用的关系型数据库管理系统,其锁机制在保障数据一致性和实现并发控制方面扮演着举足轻重的角色。对于互联网软件开发人员而言,深入理解MySQL的锁机制原理...

Java 与 MySQL 性能优化:MySQL分区表设计与性能优化全解析

引言在数据库管理领域,随着数据量的不断增长,如何高效地管理和操作数据成为了一个关键问题。MySQL分区表作为一种有效的数据管理技术,能够将大型表划分为多个更小、更易管理的分区,从而提升数据库的性能和可...

MySQL基础篇:DQL数据查询操作_mysql 查

一、基础查询DQL基础查询语法SELECT字段列表FROM表名列表WHERE条件列表GROUPBY分组字段列表HAVING分组后条件列表ORDERBY排序字段列表LIMIT...

MySql:索引的基本使用_mysql索引的使用和原理

一、索引基础概念1.什么是索引?索引是数据库表的特殊数据结构(通常是B+树),用于...