仿生智能算法系列之八---差分进化算法
wptr33 2025-06-09 00:39 15 浏览
差分进化算法(Differential Evolution 简称DE)是Rainer Storn 和Kenneth Price在1996 年提出,最初试图使用向量差进行向量种群的混洗,以此来解决切比雪夫多项式适应性问题。DE 通过种群内个体间的合作与竞争来实现对优化问题的求解,其本质上是一种基于实数编码的具有保优思想的进化算法。该算法实现技术简单,在对各种测试问题的实验中表现优异,已经成为近年来进化算法研究中的热点之一。
和其它演化算法一样,DE是一种模拟生物进化的随机模型,通过反复迭代,使得那些适应环境的个体被保存了下来。但相比于进化算法,DE保留了基于种群的全局搜索策略,采用实数编码、基于差分的简单变异操作和一对一的竞争生存策略,降低了遗传操作的复杂性。同时,DE特有的记忆能力使其可以动态跟踪当前的搜索情况,以调整其搜索策略,具有较强的全局收敛能力和鲁棒性,且不需要借助问题的特征信息,适于求解一些利用常规的数学规划方法所无法求解的复杂环境中的优化问题。目前,DE已经在在约束优化计算、聚类优化计算、非线性优化控制、神经网络优化、滤波器设计、阵列天线方向图综合及其它方面得到广泛应用。
和其它进化算法相比, 差分进化算法具有以下优点:
(1)差分进化算法在求解非凸、多峰、非线性函数优化问题表现极强的稳健性。
(2)在同样的精度要求下, 差分进化算法收敛的速度快。
(3)差分进化算法尤其擅长求解多变量的函数优化问题。
(4)操作简单, 易编程实现。
同时差分进化算法也具有一定的缺点:
由于差分进化的关键步骤-变异操作是基于群体的差异向量信息来修正各个体的值, 随着进化代数的增加, 各个体之间的差异化信息在逐渐缩小, 以至于后期收敛速度变慢, 甚至有时会陷入局部最优点。
差分进化算法的一般步骤:
(1)初始化。
(2)变异。
(3)交叉。
(4)选择。
(5)边界条件的处理。
差分进化算法的流程图如下:
下面给出算法实例,通过对下述测试函数进行算法测试:
差分进化算法的matlab程序如下:
function DE(Gm,F0)
t0 = cputime;
%差分进化算法程序
%F0是变异率 %Gm 最大迭代次数
Gm = 10000;
F0 = 0.5;
Np = 100;
CR = 0.9; %交叉概率
G= 1; %初始化代数
D = 10; %所求问题的维数
Gmin = zeros(1,Gm); %各代的最优值
best_x = zeros(Gm,D); %各代的最优解
value = zeros(1,Np); %产生初始种群
%xmin = -10; xmax = 100;%带负数的下界
xmin = -5.12;
xmax = 5.12;
function y = f(v) %Rastrigr 函数
y = sum(v.^2 - 10.*cos(2.*pi.*v) + 10);
end
X0 = (xmax-xmin)*rand(Np,D) + xmin; %产生Np个D维向量
XG = X0;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
XG_next_1= zeros(Np,D); %初始化
XG_next_2 = zeros(Np,D);
XG_next = zeros(Np,D);
while G <= Gm
G
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i = 1:Np %产生j,k,p三个不同的数
a = 1;
b = Np;
dx = randperm(b-a+1) + a- 1;
j = dx(1);
k = dx(2);
p = dx(3); %要保证与i不同
if j == i
j = dx(4);
else if k == i
k = dx(4);
else if p == i
p = dx(4);
end
end
end
%变异算子
suanzi = exp(1-Gm/(Gm + 1-G));
F = F0*2.^suanzi;
%变异的个体来自三个随机父代
son = XG(p,:) + F*(XG(j,:) - XG(k,:));
for j = 1: D
if son(1,j) >xmin & son(1,j) < xmax %防止变异超出边界
XG_next_1(i,j) = son(1,j);
else
XG_next_1(i,j) = (xmax - xmin)*rand(1) + xmin;
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i = 1: Np
randx = randperm(D);% [1,2,3,...D]的随机序列
for j = 1: D
if rand > CR & randx(1) ~= j % CR = 0.9
XG_next_2(i,j) = XG(i,j);
else
XG_next_2(i,j) = XG_next_1(i,j);
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i = 1:Np
if f(XG_next_2(i,:)) < f(XG(i,:))
XG_next(i,:) = XG_next_2(i,:);
else
XG_next(i,:) = XG(i,:);
end
end
%找出最小值
for i = 1:Np
value(i) = f(XG_next(i,:));
end
[value_min,pos_min] = min(value);
%第G代中的目标函数的最小值
Gmin(G) = value_min;
%保存最优的个体
best_x(G,:) = XG_next(pos_min,:);
XG = XG_next;
trace(G,1) = G;
trace(G,2) = value_min;
G = G + 1;
end
[value_min,pos_min] = min(Gmin);
best_value = value_min
best_vector = best_x(pos_min,:)
fprintf('DE所耗的时间为:%f \n',cputime - t0);
%画出代数跟最优函数值之间的关系图
plot(trace(:,1),trace(:,2));
end
感谢关注,欢迎感兴趣的一起交流讨论!
相关推荐
- MySQL进阶五之自动读写分离mysql-proxy
-
自动读写分离目前,大量现网用户的业务场景中存在读多写少、业务负载无法预测等情况,在有大量读请求的应用场景下,单个实例可能无法承受读取压力,甚至会对业务产生影响。为了实现读取能力的弹性扩展,分担数据库压...
- 3分钟短文 | Laravel SQL筛选两个日期之间的记录,怎么写?
-
引言今天说一个细分的需求,在模型中,或者使用laravel提供的EloquentORM功能,构造查询语句时,返回位于两个指定的日期之间的条目。应该怎么写?本文通过几个例子,为大家梳理一下。学习时...
- 一文由浅入深带你完全掌握MySQL的锁机制原理与应用
-
本文将跟大家聊聊InnoDB的锁。本文比较长,包括一条SQL是如何加锁的,一些加锁规则、如何分析和解决死锁问题等内容,建议耐心读完,肯定对大家有帮助的。为什么需要加锁呢?...
- 验证Mysql中联合索引的最左匹配原则
-
后端面试中一定是必问mysql的,在以往的面试中好几个面试官都反馈我Mysql基础不行,今天来着重复习一下自己的弱点知识。在Mysql调优中索引优化又是非常重要的方法,不管公司的大小只要后端项目中用到...
- MySQL索引解析(联合索引/最左前缀/覆盖索引/索引下推)
-
目录1.索引基础...
- 你会看 MySQL 的执行计划(EXPLAIN)吗?
-
SQL执行太慢怎么办?我们通常会使用EXPLAIN命令来查看SQL的执行计划,然后根据执行计划找出问题所在并进行优化。用法简介...
- MySQL 从入门到精通(四)之索引结构
-
索引概述索引(index),是帮助MySQL高效获取数据的数据结构(有序),在数据之外,数据库系统还维护者满足特定查询算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构...
- mysql总结——面试中最常问到的知识点
-
mysql作为开源数据库中的榜一大哥,一直是面试官们考察的重中之重。今天,我们来总结一下mysql的知识点,供大家复习参照,看完这些知识点,再加上一些边角细节,基本上能够应付大多mysql相关面试了(...
- mysql总结——面试中最常问到的知识点(2)
-
首先我们回顾一下上篇内容,主要复习了索引,事务,锁,以及SQL优化的工具。本篇文章接着写后面的内容。性能优化索引优化,SQL中索引的相关优化主要有以下几个方面:最好是全匹配。如果是联合索引的话,遵循最...
- MySQL基础全知全解!超详细无废话!轻松上手~
-
本期内容提醒:全篇2300+字,篇幅较长,可搭配饭菜一同“食”用,全篇无废话(除了这句),干货满满,可收藏供后期反复观看。注:MySQL中语法不区分大小写,本篇中...
- 深入剖析 MySQL 中的锁机制原理_mysql 锁详解
-
在互联网软件开发领域,MySQL作为一款广泛应用的关系型数据库管理系统,其锁机制在保障数据一致性和实现并发控制方面扮演着举足轻重的角色。对于互联网软件开发人员而言,深入理解MySQL的锁机制原理...
- Java 与 MySQL 性能优化:MySQL分区表设计与性能优化全解析
-
引言在数据库管理领域,随着数据量的不断增长,如何高效地管理和操作数据成为了一个关键问题。MySQL分区表作为一种有效的数据管理技术,能够将大型表划分为多个更小、更易管理的分区,从而提升数据库的性能和可...
- MySQL基础篇:DQL数据查询操作_mysql 查
-
一、基础查询DQL基础查询语法SELECT字段列表FROM表名列表WHERE条件列表GROUPBY分组字段列表HAVING分组后条件列表ORDERBY排序字段列表LIMIT...
- MySql:索引的基本使用_mysql索引的使用和原理
-
一、索引基础概念1.什么是索引?索引是数据库表的特殊数据结构(通常是B+树),用于...
- 一周热门
-
-
C# 13 和 .NET 9 全知道 :13 使用 ASP.NET Core 构建网站 (1)
-
程序员的开源月刊《HelloGitHub》第 71 期
-
详细介绍一下Redis的Watch机制,可以利用Watch机制来做什么?
-
假如有100W个用户抢一张票,除了负载均衡办法,怎么支持高并发?
-
如何将AI助手接入微信(打开ai手机助手)
-
Java面试必考问题:什么是乐观锁与悲观锁
-
redission YYDS spring boot redission 使用
-
SparkSQL——DataFrame的创建与使用
-
一文带你了解Redis与Memcached? redis与memcached的区别
-
如何利用Redis进行事务处理呢? 如何利用redis进行事务处理呢英文
-
- 最近发表
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)
- c语言 switch (34)
- git commit (34)