百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT技术 > 正文

利用Proteus仿真STM32实现DHT11温湿度检测

wptr33 2025-06-09 00:40 17 浏览

1. 前言

Proteus是英国著名的EDA工具(仿真软件),从原理图布图、代码调试到单片机与外围电路协同仿真,一 键切换到PCB设计,真正实现了从概念到产品的完整设计。是世界上唯一将电路仿真软件、PCB设计软 件和虚拟模型仿真软件三合一的设计平台,其处理器模型支持8051、HC11、
PIC10/12/16/18/24/30/DSPIC33、AVR、ARM、8086和MSP430等,2010年又增加了Cortex和DSP系 列处理器,并持续增加其他系列处理器模型。在编译方面,它也支持IAR、Keil和MATLAB等多种编译 器。 前面文章介绍了Proteus的下载,安装,建立工程,完成LED灯仿真运行。这篇文章在这基础上增加串口打印,DHT11温湿度检测。

2. 设计程序

先使用keil软件就将程序设计设计好,然后生成HEX文件,等待设计好原理图后进行仿真测试。

注意: 当前使用的芯片是STM32F103。Proteus的版本是8.9

 #include "stm32f10x.h"
 #include "led.h"
 #include "delay.h"
 #include "key.h"
 #include "dht11.h"
 
 /*
 (3)温湿度传感器: DHT11
 VCC--VCC
 GND---GND
 DAT---PA5 
 */
 
 #include "stm32f10x.h"
 #include <stdio.h>
 #include <stdarg.h>
 #include "sys.h"
 #include <string.h>
 
 #define USART1_RX_LENGTH 1024
 extern u8 USART1_RX_BUFFER[USART1_RX_LENGTH]; //保存接收数据的缓冲区
 extern u32 USART1_RX_CNT;  //当前接收到的数据长度
 extern u8 USART1_RX_FLAG; //1表示数据接收完毕 0表示没有接收完毕
 
 #define USART2_RX_LENGTH 1024
 extern u8 USART2_RX_BUFFER[USART2_RX_LENGTH]; //保存接收数据的缓冲区
 extern u32 USART2_RX_CNT;  //当前接收到的数据长度
 extern u8 USART2_RX_FLAG; //1表示数据接收完毕 0表示没有接收完毕
 
 #define USART3_RX_LENGTH 1024
 extern u8 USART3_RX_BUFFER[USART3_RX_LENGTH]; //保存接收数据的缓冲区
 extern u32 USART3_RX_CNT;  //当前接收到的数据长度
 extern u8 USART3_RX_FLAG; //1表示数据接收完毕 0表示没有接收完毕
 
 void USART1_Init(u32 baud);
 void USART2_Init(u32 baud);
 void USART3_Init(u32 baud);
 void USARTx_StringSend(USART_TypeDef *USARTx,char *str);
 void USARTx_DataSend(USART_TypeDef *USARTx,u8 *data,u32 len);
 
 //定义按键IO口
 #define KEY_S3 PAin(1) 
 
 //函数声明
 void KEY_Init(void);
 u8 KEY_Scan(u8 mode);
 
 
 //LED定义
 #define LED1 PBout(6)
 #define LED2 PBout(7)
 #define LED3 PBout(8)
 #define LED4 PBout(9)
 
 //蜂鸣器IO口定义
 #define BEEP PAout(6)
 
 //函数声明
 void LED_Init(void);
 void BEEP_Init(void);
 
 
 
 //IO方向设置
 #define DHT11_IO_IN()  {GPIOA->CRL&=0XFF0FFFFF;GPIOA->CRL|=0x00800000;}
 #define DHT11_IO_OUT() {GPIOA->CRL&=0XFF0FFFFF;GPIOA->CRL|=0x00300000;}
 ////IO操作函数                                             
 #define DHT11_DQ_OUT PAout(5) //数据端口    PA5 
 #define DHT11_DQ_IN  PAin(5)  //数据端口    PA5
 
 
 u8 DHT11_Init(void);        //初始化DHT11
 u8 DHT11_Read_Data(u8 *temp,u8 *humi);//读取温湿度
 u8 DHT11_Read_Byte(void);   //读出一个字节
 u8 DHT11_Read_Bit(void);    //读出一个位
 u8 DHT11_Check(void);       //检测是否存在DHT11
 void DHT11_Rst(void);       //复位DHT11    
 
 //复位DHT11
 void DHT11_Rst(void)       
 {                 
       DHT11_IO_OUT();   //SET OUTPUT
     DHT11_DQ_OUT=0;     //拉低DQ
     DelayMs(20);        //拉低至少18ms
     DHT11_DQ_OUT=1;     //DQ=1 
       DelayUs(30);      //主机拉高20~40us
 }
 //等待DHT11的回应
 //返回1:未检测到DHT11的存在
 //返回0:存在
 u8 DHT11_Check(void)       
 {   
     u8 retry=0;
     DHT11_IO_IN();//SET INPUT    
   while (DHT11_DQ_IN&&retry<100)//DHT11会拉低40~80us
     {
         retry++;
         DelayUs(1);
     };   
     if(retry>=100)return 1;
     else retry=0;
     while (!DHT11_DQ_IN&&retry<100)//DHT11拉低后会再次拉高40~80us
     {
         retry++;
         DelayUs(1);
     };
     if(retry>=100)return 1;     
     return 0;
 }
 //从DHT11读取一个位
 //返回值:1/0
 u8 DHT11_Read_Bit(void)              
 {
     u8 retry=0;
     while(DHT11_DQ_IN&&retry<100)//等待变为低电平
     {
         retry++;
         DelayUs(1);
     }
     retry=0;
     while(!DHT11_DQ_IN&&retry<100)//等待变高电平
     {
         retry++;
         DelayUs(1);
     }
     DelayUs(40);//等待40us
     if(DHT11_DQ_IN)return 1;
     else return 0;         
 }
 
 //从DHT11读取一个字节
 //返回值:读到的数据
 u8 DHT11_Read_Byte(void)    
 {        
     u8 i,dat;
     dat=0;
     for (i=0;i<8;i++) 
     {
         dat<<=1; 
         dat|=DHT11_Read_Bit();
     }                           
     return dat;
 }
 
 
 //从DHT11读取一次数据
 //temp:温度值(范围:0~50°)
 //humi:湿度值(范围:20%~90%)
 //返回值:0,正常;1,读取失败
 u8 DHT11_Read_Data(u8 *temp,u8 *humi)    
 {        
     u8 buf[5];
     u8 i;
     DHT11_Rst();
     //printf("------------------------\r\n");
     if(DHT11_Check()==0)
     {
         for(i=0;i<5;i++)//读取40位数据
         {
             buf[i]=DHT11_Read_Byte();
         }
         if((buf[0]+buf[1]+buf[2]+buf[3])==buf[4])
         {
             *humi=buf[0];
             *temp=buf[2];
         }
     }else return 1;
     return 0;       
 }
 
 
 //初始化DHT11的IO口 DQ 同时检测DHT11的存在
 //返回1:不存在
 //返回0:存在         
 u8 DHT11_Init(void)
 {
     RCC->APB2ENR|=1<<2;    //使能PORTA口时钟 
     GPIOA->CRL&=0XFF0FFFFF;//PORTA.5 推挽输出
     GPIOA->CRL|=0X00300000;
     GPIOA->ODR|=1<<5;      //输出1                    
     DHT11_Rst();
     return DHT11_Check();
 }
 
 
 /*
 函数功能:按键初始化
 硬件连接:PA1
 特性: 按下为低电平---没按下高电平
 */
 void KEY_Init(void)
 {
     //开时钟
     RCC->APB2ENR|=1<<2;
     //配置模式
     GPIOA->CRL&=0xFFFFFF0F;
     GPIOA->CRL|=0x00000080;
     //上拉
     GPIOA->ODR|=1<<1;
 }
 
 
 /*
 函数功能:函数扫描函数
 函数参数: mode=1表示使用连续模式  mode=0使用单击模式
 返回值:  2 3 4 5 表示具体的按钮   0表示没有按下
 */
 u8 KEY_Scan(u8 mode)
 {
    static u8 flag=1; //记录上一次按下的状态 
    if(mode)flag=1;
    if(flag&&(KEY_S3==0))
    {
        flag=0;
        delay_ms(20);
        if(KEY_S3==0)return 3;
    }
    else if(KEY_S3)
    {
        flag=1; 
    }
    return 0;
 }
 
 
 /*
 函数功能: LED初始化
 硬件连接: PB6 PB7 PB8 PB9
 特性: 低电平点亮
 */
 void LED_Init(void)
 {
     //开时钟
     RCC->APB2ENR|=1<<3;
     //配置GPIO口
     GPIOB->CRL&=0x00FFFFFF;
     GPIOB->CRL|=0x22000000;
     GPIOB->CRH&=0xFFFFFF00;
     GPIOB->CRH|=0x00000022;
     //上拉
     GPIOB->ODR|=1<<6;
     GPIOB->ODR|=1<<7;
     GPIOB->ODR|=1<<8;
     GPIOB->ODR|=1<<9;
 }
 
 /*
 函数功能: 蜂鸣器初始化
 硬件连接: PA6
 特性: 高电平响
 */
 void BEEP_Init(void)
 {
    RCC->APB2ENR|=1<<2;
    GPIOA->CRL&=0xF0FFFFFF;
    GPIOA->CRL|=0x02000000;
 }
 
 
 /*
 函数功能: 串口1的初始化
 硬件连接: PA9(TX)  和 PA10(RX)
 */
 void USART1_Init(u32 baud)
 {
     /*1. 开时钟*/
     RCC->APB2ENR|=1<<14; //USART1时钟
     RCC->APB2ENR|=1<<2;  //PA
     RCC->APB2RSTR|=1<<14; //开启复位时钟
     RCC->APB2RSTR&=~(1<<14);//停止复位
     /*2. 配置GPIO口的模式*/
     GPIOA->CRH&=0xFFFFF00F;
     GPIOA->CRH|=0x000008B0;
     /*3. 配置波特率*/
     USART1->BRR=72000000/baud;
     /*4. 配置核心寄存器*/
     USART1->CR1|=1<<5; //开启接收中断
     STM32_SetPriority(USART1_IRQn,1,1); //设置中断优先级
     USART1->CR1|=1<<2; //开启接收
     USART1->CR1|=1<<3; //开启发送
     USART1->CR1|=1<<13;//开启串口功能
 }
 
 /*
 函数功能: 串口2的初始化
 硬件连接: PA2(TX)  和 PA3(RX)
 */
 void USART2_Init(u32 baud)
 {
     /*1. 开时钟*/
     RCC->APB1ENR|=1<<17; //USART2时钟
     RCC->APB2ENR|=1<<2;  //PA
     RCC->APB1RSTR|=1<<17; //开启复位时钟
     RCC->APB1RSTR&=~(1<<17);//停止复位
     
     /*2. 配置GPIO口的模式*/
     GPIOA->CRL&=0xFFFF00FF;
     GPIOA->CRL|=0x00008B00;
     /*3. 配置波特率*/
     USART2->BRR=36000000/baud;
     /*4. 配置核心寄存器*/
     USART2->CR1|=1<<5; //开启接收中断
     STM32_SetPriority(USART2_IRQn,1,1); //设置中断优先级
     USART2->CR1|=1<<2; //开启接收
     USART2->CR1|=1<<3; //开启发送
     USART2->CR1|=1<<13;//开启串口功能
 }
 
 /*
 函数功能: 串口3的初始化
 硬件连接: PB10(TX)  和 PB11(RX)
 */
 void USART3_Init(u32 baud)
 {
     /*1. 开时钟*/
     RCC->APB1ENR|=1<<18; //USART3时钟
     RCC->APB2ENR|=1<<3;  //PB
     RCC->APB1RSTR|=1<<18; //开启复位时钟
     RCC->APB1RSTR&=~(1<<18);//停止复位
     
     /*2. 配置GPIO口的模式*/
     GPIOB->CRH&=0xFFFF00FF;
     GPIOB->CRH|=0x00008B00;
     /*3. 配置波特率*/
     USART3->BRR=36000000/baud;
     /*4. 配置核心寄存器*/
     USART3->CR1|=1<<5; //开启接收中断
     STM32_SetPriority(USART3_IRQn,1,1); //设置中断优先级
     USART3->CR1|=1<<2; //开启接收
     USART3->CR1|=1<<3; //开启发送
     USART3->CR1|=1<<13;//开启串口功能
 }
 
 u8 USART1_RX_BUFFER[USART1_RX_LENGTH]; //保存接收数据的缓冲区
 u32 USART1_RX_CNT=0;  //当前接收到的数据长度
 u8 USART1_RX_FLAG=0; //1表示数据接收完毕 0表示没有接收完毕
 
 //串口1的中断服务函数
 void USART1_IRQHandler(void)
 {
     u8 data;
     //接收中断
     if(USART1->SR&1<<5)
     {
         TIM1->CNT=0; //清除计数器
         TIM1->CR1|=1<<0; //开启定时器1
         data=USART1->DR; //读取串口数据
       //  if(USART1_RX_FLAG==0) //判断上一次的数据是否已经处理完毕
         {
             //判断是否可以继续接收
             if(USART1_RX_CNT<USART1_RX_LENGTH)
             {
                USART1_RX_BUFFER[USART1_RX_CNT++]=data;
             }
             else  //不能接收,超出存储范围,强制表示接收完毕
             {
                 USART1_RX_FLAG=1;
             }
         } 
     }
 }
 
 
 u8 USART2_RX_BUFFER[USART2_RX_LENGTH]; //保存接收数据的缓冲区
 u32 USART2_RX_CNT=0;  //当前接收到的数据长度
 u8 USART2_RX_FLAG=0; //1表示数据接收完毕 0表示没有接收完毕
 
 //串口2的中断服务函数
 void USART2_IRQHandler(void)
 {
     u8 data;
     //接收中断
     if(USART2->SR&1<<5)
     {
         TIM2->CNT=0; //清除计数器
         TIM2->CR1|=1<<0; //开启定时器2
         data=USART2->DR; //读取串口数据
       //  if(USART2_RX_FLAG==0) //判断上一次的数据是否已经处理完毕
         {
             //判断是否可以继续接收
             if(USART2_RX_CNT<USART2_RX_LENGTH)
             {
                USART2_RX_BUFFER[USART2_RX_CNT++]=data;
             }
             else  //不能接收,超出存储范围,强制表示接收完毕
             {
                 USART2_RX_FLAG=1;
             }
         } 
     }
 }
 
 u8 USART3_RX_BUFFER[USART3_RX_LENGTH]; //保存接收数据的缓冲区
 u32 USART3_RX_CNT=0;  //当前接收到的数据长度
 u8 USART3_RX_FLAG=0; //1表示数据接收完毕 0表示没有接收完毕
 
 //串口3的中断服务函数
 void USART3_IRQHandler(void)
 {
     u8 data;
     //接收中断
     if(USART3->SR&1<<5)
     {
         TIM3->CNT=0; //清除计数器
         TIM3->CR1|=1<<0; //开启定时器3
         data=USART3->DR; //读取串口数据
       //  if(USART3_RX_FLAG==0) //判断上一次的数据是否已经处理完毕
         {
             //判断是否可以继续接收
             if(USART3_RX_CNT<USART3_RX_LENGTH)
             {
                USART3_RX_BUFFER[USART3_RX_CNT++]=data;
             }
             else  //不能接收,超出存储范围,强制表示接收完毕
             {
                 USART3_RX_FLAG=1;
             }
         } 
     }
 }
 
 
 /*
 函数功能: 字符串发送
 */
 void USARTx_StringSend(USART_TypeDef *USARTx,char *str)
 {
    while(*str!='\0')
    {
        USARTx->DR=*str++;
        while(!(USARTx->SR&1<<7)){}
    }
 }
 
 /*
 函数功能: 数据发送
 */
 void USARTx_DataSend(USART_TypeDef *USARTx,u8 *data,u32 len)
 {
    u32 i;
    for(i=0;i<len;i++)
    {
        USARTx->DR=*data++;
        while(!(USARTx->SR&1<<7)){}
    }
 }
 
 //printf函数底层函数接口
 int fputc(int c, FILE* stream)
 {
     USART1->DR=c;
     while(!(USART1->SR&1<<7)){}
     return c;
 }
 
 
 u8 dht11_temp;
 u8 dht11_humidity;
 
 int main()
 {
    u8 key_val;
    u32 time=0;
    LED_Init();
    BEEP_Init();
    KEY_Init();
    USART1_Init(115200);    //串口1初始化-打印调试信息
    //初始化DHT11
    DHT11_Init();
     
    while(1)
    {
       key_val=KEY_Scan(0); //PA1
       if(key_val)
       {
          BEEP=!BEEP;
          LED1=!LED1;   //PB6
       }
       delay_ms(5);
       
       time++;
       if(time>=10)
       {
         time=0;
         LED2=!LED2; //PB7
           
         //读取温湿度
         if(DHT11_Read_Data(&dht11_temp,&dht11_humidity))
         {
             printf("温度读取失败.\r\n");
         }        
         printf("T:%d,H:%d\r\n",dht11_temp,dht11_humidity);
         
         //湿度大于80以上就关闭插座
         if(dht11_humidity>80)
         {
             LED1=1;
         }
       }
    }
 }

3. 设计电路图

3.1 添加DHT11器件

打开Proteus,搜索DHT11元器件。

鼠标选择空白区域,点击鼠标右键,放置电源和GND。

设计好的效果如下:

3.2 添加虚拟串口终端

为了方便查看程序的串口输出,添加一个串口终端显示框。

在虚拟仪表模式下,选择virtual terminal工具,然后在原理图空白区域点击一下就可以放virtual terminal工具。

在绘制原理图的经常遇到连线复杂,或者布线很乱,如果元器件的引脚不方便直接与MCU单片机连接,可以采用标签的形式或者总线方式布线。这里以串口终端演示,采用标签方式连接IO口。

首先在坐标的菜单栏里选择终端模式,然后鼠标点击DEFAULT,然后在原理图的空白区域,点击一下鼠标左键,会出现一个空心的连接线条,将这个连接线条连接到元器件的IO口上就行。

放置好之后,鼠标点击这个接线端子--空心圆圈,弹出对话框,设置连接的IO口。

然后MCU的PA9和PA10的端子上也设置好标签名称。

设置虚拟串口显示器的波特率为:115200

如果在调试仿真时, Virtual Terminal无法自动弹出窗口,可以点击菜单栏的调试,选择恢复弹出窗口。

设置STM32芯片的晶振为:71MHZ

3.3 开始仿真

本文正在参加「金石计划」

相关推荐

MySQL进阶五之自动读写分离mysql-proxy

自动读写分离目前,大量现网用户的业务场景中存在读多写少、业务负载无法预测等情况,在有大量读请求的应用场景下,单个实例可能无法承受读取压力,甚至会对业务产生影响。为了实现读取能力的弹性扩展,分担数据库压...

Postgres vs MySQL_vs2022连接mysql数据库

...

3分钟短文 | Laravel SQL筛选两个日期之间的记录,怎么写?

引言今天说一个细分的需求,在模型中,或者使用laravel提供的EloquentORM功能,构造查询语句时,返回位于两个指定的日期之间的条目。应该怎么写?本文通过几个例子,为大家梳理一下。学习时...

一文由浅入深带你完全掌握MySQL的锁机制原理与应用

本文将跟大家聊聊InnoDB的锁。本文比较长,包括一条SQL是如何加锁的,一些加锁规则、如何分析和解决死锁问题等内容,建议耐心读完,肯定对大家有帮助的。为什么需要加锁呢?...

验证Mysql中联合索引的最左匹配原则

后端面试中一定是必问mysql的,在以往的面试中好几个面试官都反馈我Mysql基础不行,今天来着重复习一下自己的弱点知识。在Mysql调优中索引优化又是非常重要的方法,不管公司的大小只要后端项目中用到...

MySQL索引解析(联合索引/最左前缀/覆盖索引/索引下推)

目录1.索引基础...

你会看 MySQL 的执行计划(EXPLAIN)吗?

SQL执行太慢怎么办?我们通常会使用EXPLAIN命令来查看SQL的执行计划,然后根据执行计划找出问题所在并进行优化。用法简介...

MySQL 从入门到精通(四)之索引结构

索引概述索引(index),是帮助MySQL高效获取数据的数据结构(有序),在数据之外,数据库系统还维护者满足特定查询算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构...

mysql总结——面试中最常问到的知识点

mysql作为开源数据库中的榜一大哥,一直是面试官们考察的重中之重。今天,我们来总结一下mysql的知识点,供大家复习参照,看完这些知识点,再加上一些边角细节,基本上能够应付大多mysql相关面试了(...

mysql总结——面试中最常问到的知识点(2)

首先我们回顾一下上篇内容,主要复习了索引,事务,锁,以及SQL优化的工具。本篇文章接着写后面的内容。性能优化索引优化,SQL中索引的相关优化主要有以下几个方面:最好是全匹配。如果是联合索引的话,遵循最...

MySQL基础全知全解!超详细无废话!轻松上手~

本期内容提醒:全篇2300+字,篇幅较长,可搭配饭菜一同“食”用,全篇无废话(除了这句),干货满满,可收藏供后期反复观看。注:MySQL中语法不区分大小写,本篇中...

深入剖析 MySQL 中的锁机制原理_mysql 锁详解

在互联网软件开发领域,MySQL作为一款广泛应用的关系型数据库管理系统,其锁机制在保障数据一致性和实现并发控制方面扮演着举足轻重的角色。对于互联网软件开发人员而言,深入理解MySQL的锁机制原理...

Java 与 MySQL 性能优化:MySQL分区表设计与性能优化全解析

引言在数据库管理领域,随着数据量的不断增长,如何高效地管理和操作数据成为了一个关键问题。MySQL分区表作为一种有效的数据管理技术,能够将大型表划分为多个更小、更易管理的分区,从而提升数据库的性能和可...

MySQL基础篇:DQL数据查询操作_mysql 查

一、基础查询DQL基础查询语法SELECT字段列表FROM表名列表WHERE条件列表GROUPBY分组字段列表HAVING分组后条件列表ORDERBY排序字段列表LIMIT...

MySql:索引的基本使用_mysql索引的使用和原理

一、索引基础概念1.什么是索引?索引是数据库表的特殊数据结构(通常是B+树),用于...