百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT技术 > 正文

Python程序员如何调试和分析Python脚本程序?附代码实现

wptr33 2025-06-23 22:40 42 浏览

调试和分析Python脚本程序

调试技术和分析技术在Python开发中发挥着重要作用。调试器可以设置条件断点,帮助程序员分析所有代码。而分析器可以运行程序,并提供运行时的详细信息,同时也能找出程序中的性能瓶颈。在本章中,我们将学习Python调试器常用的pdb、cProfile模块和用于计算Python程序运行时间的timeit模块。




本章将介绍以下主题。

  • Python调试技术。
  • 错误处理(异常处理)。
  • 调试工具。
  • 调试基本的程序崩溃。
  • 分析程序并计时。
  • 使程序运行得更快。

1.1 什么是调试

调试(debugging)是暂停正在运行的程序,并解决程序中出现的问题的过程。调试Python程序非常简单,Python调试器会设置条件断点,并一次执行一行代码。接下来我们将使用Python标准库中的pdb模块调试Python程序。

Python调试技术

我们可以使用多种方法调试Python程序,以下是调试Python程序的4种方法。

  • print语句:这是了解程序运行时状况的一种简单方法,它可以检查程序执行的过程。
  • 日志(logging):这类似于print语句,但可以输出更多上下文信息,所以我们十分有必要学习它。
  • pdb调试器:这是一种常用的调试技术。pdb的优点是使用非常方便,只需要一个Python解释器,一段Python程序,就可以在命令行使用pdb了。
  • IDE调试器:IDE集成了调试器,它可以让我们执行其编写的代码,并在需要时检查正在运行的程序。

2.2 错误处理(异常处理)

本节我们将学习如何处理Python的异常。首先,什么是异常?异常是指程序执行期间发生的错误。每当发生错误时,Python都会生成一个异常。异常将会被try...except语句块处理。如果程序无法处理某些异常,就会输出错误消息。现在我们来看一些异常示例。

打开终端,启动Python3交互式控制台,以下是一些异常示例。

student@ubuntu:~$ python3
Python 3.5.2 (default, Nov 23 2017, 16:37:01)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>
>>> 50 / 0


Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero
>>>
>>> 6 + abc*5
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
NameError: name 'abc' is not defined
>>>
>>> 'abc' + 2
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: Can't convert 'int' object to str implicitly
>>>
>>> import abcd
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ImportError: No module named 'abcd'
>>>

下面我们学习如何处理异常。

每当Python程序中发生错误时,都会抛出异常。我们也可以使用raise关键字强制抛出异常。

try...except语句块可以用来处理异常。在try语句块中,编写可能抛出异常的代码,而在except语句块中,则为该异常编写一个解决方案。

try...except语句块的语法如下所示。

try:
            statement(s)
except:
            statement(s)

一个try语句块可以对应多个except语句块。我们也可以通过在except关键字后面输入异常的名称来处理特定的异常。处理特定的异常的语法如下所示。

try:
            statement(s)
except exception_name:
            statement(s)

现在创建一个脚本,命名为exception_example.py,该脚本将捕获ZeroDivisionError异常。在脚本中添加如下代码。

a = 35
b = 57
try:
            c = a + b
            print("The value of c is: ", c) 
            d = b / 0
            print("The value of d is: ", d)
except:
            print("Division by zero is not possible")

print("Out of try...except block")

运行该脚本,输出的信息如下所示。

student@ubuntu:~$ python3 exception_example.py
The value of c is:  92
Division by zero is not possible
Out of try...except block

12.3 调试工具

Python拥有许多调试工具,如下所示。

  • winpdb。
  • pydev。
  • pydb。
  • pdb。
  • gdb。
  • pydebug。

在本节中,我们将学习如何使用Python的pdb调试器。pdb模块是Python标准库的一部分,我们可以直接使用。

1.3.1 pdb调试器

Python程序使用pdb交互式源代码调试器来调试程序。pdb调试器可以设置程序断点并检查栈帧,同时列出源代码。

现在我们将了解如何使用pdb调试器。以下3种方法均可使用此调试器。

  • 在解释器中运行。
  • 在命令行中运行。
  • 在Python脚本中使用。

现在创建一个脚本,命名为pdb_example.py,在该脚本中添加以下代码。

class Student:
            def __init__(self, std):
                        self.count = std
            def print_std(self):
                        for i in range(self.count):
                                    print(i)
                        return
if __name__ == '__main__':
            Student(5).print_std()

后面以此脚本为例学习Python调试,现在我们来看如何启动调试器。

1.3.2 在解释器中运行

使用run()函数或runeval()函数从Python交互式控制台中启动调试器。

启动Python3交互式控制台,运行以下命令即可。

$ python3

首先导入pdb_example脚本的名称和pdb模块。然后输入run()函数,并传递一个字符串表达式作为参数,该参数是传给Python解释器本身的,由Python解释器运行。

student@ubuntu:~$ python3
Python 3.5.2 (default, Nov 23 2017, 16:37:01)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>
>>> import pdb_example
>>> import pdb
>>> pdb.run('pdb_example.Student(5).print_std()')
> <string>(1)<module>()
(Pdb)

如果要继续调试,请在(Pdb)提示符后输入continue,然后按Enter键。如果想知道此处可以输入的选项,那么就在(Pdb)提示符后按两次Tab键。

输入continue后,就会得到以下输出。

student@ubuntu:~$ python3
Python 3.5.2 (default, Nov 23 2017, 16:37:01)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>
>>> import pdb_example
>>> import pdb
>>> pdb.run('pdb_example.Student(5).print_std()')
> <string>(1)<module>()
(Pdb) Continue
0
1
2
3
4
>>>

1.3.3 在命令行中运行

启动调试器最简单、最直接的方法是从命令行运行。此时脚本程序将作为调试器的输入。从命令行启动调试器的方法如下所示。

$ python3 -m pdb pdb_example.py

从命令行启动调试器时,源代码会被加载,然后停止在第一行代码。输入continue可以继续调试。输出的信息如下所示。

student@ubuntu:~$ python3 -m pdb pdb_example.py
> /home/student/pdb_example.py(1)<module>()
-> class Student:
(Pdb) continue
0
1
2
3
4
The program finished and will be restarted
> /home/student/pdb_example.py(1)<module>()
-> class Student:
(Pdb)

1.3.4 在Python脚本中使用

前两种方法会在Python程序开始时启动调试器,适合较短的脚本程序,但第三种方法比较适合非常长的脚本程序,即在脚本中使用set_trace()启动调试器。

现在我们修改pdb_example.py脚本,如下所示。

import pdb
class Student:
            def __init__(self, std):
                        self.count = std

            def print_std(self):
                        for i in range(self.count):
                                    pdb.set_trace()
                                    print(i)
                        return

if __name__ == '__main__':
            Student(5).print_std()

运行脚本程序,如下所示。

student@ubuntu:~$ python3 pdb_example.py
> /home/student/pdb_example.py(10)print_std()
-> print(i)
(Pdb) continue
0
> /home/student/pdb_example.py(9)print_std()
-> pdb.set_trace()
(Pdb)

set_trace()是一个Python函数,我们可以在程序中的任何位置调用它。

这就是使用调试器的3种方法。

1.4 调试基本程序崩溃的方法

本节我们将学习跟踪模块,跟踪模块可以跟踪程序的执行。每当Python程序崩溃时,我们可以查看崩溃的位置,并通过将其导入脚本,或从命令行启动来使用跟踪模块。

现在我们创建一个脚本,命名为trace_example.py,并添加以下代码。

class Student:
            def __init__(self, std):
                        self.count = std

            def go(self):
                        for i in range(self.count):
                                    print(i)
                        return
if __name__ == '__main__':
            Student(5).go()

运行脚本程序,如下所示。

student@ubuntu:~$ python3 -m trace --trace trace_example.py
 --- modulename: trace_example, funcname: <module>
trace_example.py(1): class Student:
 --- modulename: trace_example, funcname: Student
trace_example.py(1): class Student:
trace_example.py(2):   def __init__(self, std):
trace_example.py(5):   def go(self):
trace_example.py(10): if __name__ == '__main__':
trace_example.py(11):            Student(5).go()
 --- modulename: trace_example, funcname: init
trace_example.py(3):               self.count = std
 --- modulename: trace_example, funcname: go
trace_example.py(6):               for i in range(self.count):
trace_example.py(7):                           print(i)
0
trace_example.py(6):               for i in range(self.count):
trace_example.py(7):                           print(i)
1
trace_example.py(6):               for i in range(self.count):
trace_example.py(7):                           print(i)
2
trace_example.py(6):               for i in range(self.count):
trace_example.py(7):                           print(i)
3
trace_example.py(6):               for i in range(self.count):
trace_example.py(7):                           print(i)
4

因此,通过在命令行中使用trace --trace,我们就可以逐行跟踪程序。当程序崩溃时,我们就会了解崩溃时的信息。

1.5 分析程序并计时

分析程序意味着测量程序的运行时间,具体来说就是测量每个函数所花费的时间。Python的cProfile模块可以用来分析程序。

1.5.1 cProfile模块

如前所述,分析程序意味着测量程序的运行时间。现在我们使用Python的cProfile模块来分析程序。

我们创建一个脚本,命名为cprof_example.py,并在脚本中添加以下代码。

mul_value = 0
def mul_numbers( num1, num2 ):
            mul_value = num1 * num2
            print ("Local Value: ", mul_value)
            return mul_value
mul_numbers( 58, 77 )
print ("Global Value: ", mul_value)

运行脚本程序,如下所示。

student@ubuntu:~$ python3 -m cProfile cprof_example.py
Local Value:  4466
Global Value:  0
         6 function calls in 0.000 seconds
   Ordered by: standard name
    
   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.000    0.000    0.000    0.000 cprof_example.py:1(<module>)
        1    0.000    0.000    0.000    0.000 cprof_example.py:2(mul_numbers)
        1    0.000    0.000    0.000    0.000 {built-in method builtins.exec}
        2    0.000    0.000    0.000    0.000 {built-in method builtins.print}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}

如上,使用cProfile横线可以输出所有被调用函数所花费的时间。现在我们来看输出表格中列标题的含义。

  • ncalls:调用次数。
  • tottime:该函数花费的总时间。
  • percall:该函数单次调用花费的平均时间,即tottime除以ncalls。
  • cumtime:该函数和所有子函数花费的累计时间。
  • percall:该函数单次调用包括其子函数花费的平均时间,即 cumtime 除以ncalls。
  • filename:lineno(function):每个函数调用的相关信息。

1.5.2 timeit模块

timeit也是一个Python模块,它可以为其中一部分Python脚本计时。我们可以从命令行调用timeit模块,也可以将timeit模块导入到脚本中。现在我们编写一个脚本来为一段代码计时。创建一个脚本,命名为timeit_example.py,并添加以下代码。

import timeit
prg_setup = "from math import sqrt"
prg_code = '''
def timeit_example():
            list1 = []
            for x in range(50):
                        list1.append(sqrt(x))
'''
#时间声明
print(timeit.timeit(setup = prg_setup, stmt = prg_code, number = 10000))

我们可以使用timeit模块去测量特定代码的性能,也可以使用该模块轻松编写测试代码,并应用到需要单独测试的代码段上。被测试的代码默认运行100万次,而测试代码只运行1次。

1.6 使程序运行得更快

有多种方法可以使Python程序运行得更快,以下是一些常用方法。

  • 分析代码,并找出其瓶颈。
  • 尽量使用内置函数和库,减少循环的使用,以降低解释器的开销。
  • 尽量避免使用全局变量,因为Python访问全局变量非常慢。
  • 尽量使用已有的程序包和模块。

1.7 总结

在本章中,我们了解了调试程序和分析程序的重要性,也学习了各种调试程序的技术,包括使用pdb调试器处理Python的异常。在分析程序并实现计时功能时,学习了如何使用Python的cProfile和timeit模块。最后还学习了如何使程序运行得更快。

在第3章中,我们将学习Python的单元测试,即如何创建和使用单元测试。

1.8 问题

1.通常使用哪个模块调试Python程序?

2.学习如何使用ipython的所有别名和魔术函数。

3.什么是全局解释器锁(GIL)?

4.环境变量PYTHONSTARTUP、PYTHONCASEOK和PYTHONHOME的用途是什么?

5.以下代码的输出是什么?

    def foo(k):
        k = [1]
    q = [0]
    foo(q)
    print(q)

a)[0]

b)[1]

c)[1,0]

d)[0,1]

6.以下哪项是无效的变量名?

a)my_string_1

b)1st_string

c)foo

d)_

相关推荐

MySQL进阶五之自动读写分离mysql-proxy

自动读写分离目前,大量现网用户的业务场景中存在读多写少、业务负载无法预测等情况,在有大量读请求的应用场景下,单个实例可能无法承受读取压力,甚至会对业务产生影响。为了实现读取能力的弹性扩展,分担数据库压...

Postgres vs MySQL_vs2022连接mysql数据库

...

3分钟短文 | Laravel SQL筛选两个日期之间的记录,怎么写?

引言今天说一个细分的需求,在模型中,或者使用laravel提供的EloquentORM功能,构造查询语句时,返回位于两个指定的日期之间的条目。应该怎么写?本文通过几个例子,为大家梳理一下。学习时...

一文由浅入深带你完全掌握MySQL的锁机制原理与应用

本文将跟大家聊聊InnoDB的锁。本文比较长,包括一条SQL是如何加锁的,一些加锁规则、如何分析和解决死锁问题等内容,建议耐心读完,肯定对大家有帮助的。为什么需要加锁呢?...

验证Mysql中联合索引的最左匹配原则

后端面试中一定是必问mysql的,在以往的面试中好几个面试官都反馈我Mysql基础不行,今天来着重复习一下自己的弱点知识。在Mysql调优中索引优化又是非常重要的方法,不管公司的大小只要后端项目中用到...

MySQL索引解析(联合索引/最左前缀/覆盖索引/索引下推)

目录1.索引基础...

你会看 MySQL 的执行计划(EXPLAIN)吗?

SQL执行太慢怎么办?我们通常会使用EXPLAIN命令来查看SQL的执行计划,然后根据执行计划找出问题所在并进行优化。用法简介...

MySQL 从入门到精通(四)之索引结构

索引概述索引(index),是帮助MySQL高效获取数据的数据结构(有序),在数据之外,数据库系统还维护者满足特定查询算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构...

mysql总结——面试中最常问到的知识点

mysql作为开源数据库中的榜一大哥,一直是面试官们考察的重中之重。今天,我们来总结一下mysql的知识点,供大家复习参照,看完这些知识点,再加上一些边角细节,基本上能够应付大多mysql相关面试了(...

mysql总结——面试中最常问到的知识点(2)

首先我们回顾一下上篇内容,主要复习了索引,事务,锁,以及SQL优化的工具。本篇文章接着写后面的内容。性能优化索引优化,SQL中索引的相关优化主要有以下几个方面:最好是全匹配。如果是联合索引的话,遵循最...

MySQL基础全知全解!超详细无废话!轻松上手~

本期内容提醒:全篇2300+字,篇幅较长,可搭配饭菜一同“食”用,全篇无废话(除了这句),干货满满,可收藏供后期反复观看。注:MySQL中语法不区分大小写,本篇中...

深入剖析 MySQL 中的锁机制原理_mysql 锁详解

在互联网软件开发领域,MySQL作为一款广泛应用的关系型数据库管理系统,其锁机制在保障数据一致性和实现并发控制方面扮演着举足轻重的角色。对于互联网软件开发人员而言,深入理解MySQL的锁机制原理...

Java 与 MySQL 性能优化:MySQL分区表设计与性能优化全解析

引言在数据库管理领域,随着数据量的不断增长,如何高效地管理和操作数据成为了一个关键问题。MySQL分区表作为一种有效的数据管理技术,能够将大型表划分为多个更小、更易管理的分区,从而提升数据库的性能和可...

MySQL基础篇:DQL数据查询操作_mysql 查

一、基础查询DQL基础查询语法SELECT字段列表FROM表名列表WHERE条件列表GROUPBY分组字段列表HAVING分组后条件列表ORDERBY排序字段列表LIMIT...

MySql:索引的基本使用_mysql索引的使用和原理

一、索引基础概念1.什么是索引?索引是数据库表的特殊数据结构(通常是B+树),用于...