stm32使用MPU6050或ADXL345控制的车辆减速灯
wptr33 2025-07-06 17:25 32 浏览
本实验例程采用MPU6050六轴运动处理组件,模拟实现车辆减速时的灯源呼吸闪烁,以此起到警示作用。(本人也有采用ADXL345实现项目的源码程序,文章结尾2种代码都会开源)
项目介绍:基于stm32的车辆减速灯项目有很多学校作为期末考核亦或是毕设等项目,该项目整体较为简单。主要采用MPU6050亦或是ADXL345等姿态测量传感器进行三轴加速度和角速度测量,利用得到的数据进行条件判断。当满足预设条件后,LED灯按照要求进行呼吸闪烁(有些朋友可能会采用PWM调节LED,但是本人感觉PWM呼吸效果并不能起到警示作用。故应该采用PWM形式的模拟闪烁LED)。
硬件设备:STM32F103ZET6;MPU6050;LED
一、MPU6050简介
MPU6050 是 InvenSense 公司推出的全球首款整合性 6 轴运动处理组件,相较于多组件方案,免除了组合陀螺仪与加速器时之轴间差的问题,减少了安装空间。
MPU6050 内部整合了 3 轴陀螺仪和 3 轴加速度传感器,并且含有一个第二 IIC 接口,可用于连接外部磁力传感器,并利用自带的数字运动处理器(DMP: Digital Motion Processor)硬件加速引擎,通过主 IIC 接口,向应用端输出完整的 9 轴融合演算数据。有了 DMP,我们可以使用 InvenSense 公司提供的运动处理资料库,非常方便的实现姿态解算,降低了运动处理运算对操作系统的负荷,同时大大降低了开发难度。
MPU6050 的特点包括:
① 以数字形式输出 6 轴或 9 轴(需外接磁传感器)的旋转矩阵、四元数(quaternion)、欧拉角格式(Euler Angle forma)的融合演算数据(需 DMP 支持)
② 具有 131 LSBs/°/sec 敏感度与全格感测范围为±250、±500、±1000 与±2000°/sec 的 3 轴角速度感测器(陀螺仪)
③ 集成可程序控制,范围为±2g、±4g、±8g 和±16g 的 3 轴加速度传感器
④ 移除加速器与陀螺仪轴间敏感度,降低设定给予的影响与感测器的飘移
⑤ 自带数字运动处理(DMP: Digital Motion Processing)引擎可减少 MCU 复杂的融合演算数据、感测器同步化、姿势感应等的负荷
⑥ 内建运作时间偏差与磁力感测器校正演算技术,免除了客户须另外进行校正的需求
⑦ 自带一个数字温度传感器
⑧ 带数字输入同步引脚(Sync pin)支持视频电子影相稳定技术与 GPS
⑨ 可程序控制的中断(interrupt),支持姿势识别、摇摄、画面放大缩小、滚动、快速下降中断、high-G 中断、零动作感应、触击感应、摇动感应功能
⑩ VDD 供电电压为 2.5V±5%、3.0V±5%、3.3V±5%;VLOGIC 可低至 1.8V± 5%
(11) 陀螺仪工作电流:5mA,陀螺仪待机电流:5uA;加速器工作电流:500uA,加速器省电模式电流:40uA@10Hz
(12) 自带 1024 字节 FIFO,有助于降低系统功耗
(13) 高达 400Khz 的 IIC 通信接口
(14) 超小封装尺寸:4x4x0.9mm(QFN)
MPU6050 传感器的检测轴如图所示:
MPU6050 的内部框图如图所示:
其中,SCL 和 SDA 是连接 MCU 的 IIC 接口,MCU 通过这个 IIC 接口来控制 MPU6050,另外还有一个 IIC 接口:AUX_CL 和 AUX_DA,这个接口可用来连接外部从设备,比如磁传感器,这样就可以组成一个九轴传感器。AD0 是从 IIC 接口(接 MCU)的地址控制引脚,该引脚控制 IIC 地址的最低位。如果接 GND,则 MPU6050 的 IIC 地址是:0X68,如果接 VDD,则是 0X69,注意:这里的地址是不包含数据传输的最低位的(最低位用来表示读写)!!
实物图片:
引脚接线:
SDA --> I2C1_SDA
SCL --> I2C1_SCL
VCC --> 3.3v
GND --> GND
接下来,我们介绍一下利用 STM32F1 读取 MPU6050 的加速度和角度传感器数据(非中断方式),需要哪些初始化步骤:
(1)初始化 IIC 接口 ;
(2)复位 MPU6050;
(3)设置角速度传感器(陀螺仪)和加速度传感器的满量程范围;
(4)设置其他参数;
(5)配置系统时钟源并使能角速度传感器和加速度传感器 ;
该部分主要在MPU6050.C文件中有详细解释与编写过程,MPU6050主要采用I2C通讯(软件模拟)。
DMP 使用简介 :
我们可以读出 MPU6050 的加速度传感器和角速度传感器的原始数据。不过这些原始数据,对想搞四轴之类的初学者来说,用处不大,我们期望得到的是姿态数据,也就是欧拉角:航向角(yaw)、横滚角(roll)和俯仰角(pitch)。有了这三个角,我们就可以得到当前四轴的姿态,这才是我们想要的结果。(由于本项目比较简单并不需要欧拉角作为减速的判定依据,所以这里不过多介绍,代码中也没有使用到。为了满足读者各种需求,开源的代码中会放置DMP的可移植程序供大家参考)
补充说明:MPU6050姿态传感器的使用面很广,例如:无人机,平衡小车,运动手环等等,是一个值得学习的模块,希望读者有时间的情况尽可能地好好研究一下。
二、模拟PWM的闪烁呼吸灯
笔者前文有介绍,很多老师亦或是学生会习惯性直接使用PWM调节LED灯达到呼吸效果,来作为车辆减速灯的效果。但是,笔者认为PWM呼吸灯起不到警示作用。这里给大家介绍一种模拟PWM呼吸的闪烁警示灯。这种闪烁警示灯的编程原理有点类似于增量式PID的增量数值化,在51单片机中也很常见类似的编程效果。
总所周知,PWM调节时利用占空比去进行计数器比值,通过与设定的阈值比较后重装载来实现稳步呼吸的效果。而这里模拟PWM呼吸闪烁警示灯则是利用逐步增大或减小delay延迟的us秒数去亮灭LED灯来实现该功能。
其中,HAL库只提供了ms级别的延迟函数。所以这里需要自己去使用定时器TIM去编写一个us级别的延迟函数。
该方法思路是将定时器设置为1MHZ的计数频率,定时器计一个数就是1us,实现如下:
#define DLY_TIM_Handle (&htim4)
void delay_us(uint16_t nus)
{
__HAL_TIM_SET_COUNTER(DLY_TIM_Handle, 0);
__HAL_TIM_ENABLE(DLY_TIM_Handle);
while (__HAL_TIM_GET_COUNTER(DLY_TIM_Handle) < nus)
{
}
__HAL_TIM_DISABLE(DLY_TIM_Handle);
}
实现模拟PWM呼吸闪烁警示灯的代码函数:breathing_led()函数
void breathing_led()
{
if(flag == 0)
{
for(i = 0 ; i <= 10 ; i++){
HAL_GPIO_WritePin(GPIOE,GPIO_PIN_5,0);
HAL_Delay(t);
HAL_GPIO_WritePin(GPIOE,GPIO_PIN_5,1);
HAL_Delay(41-t);
}
t++;
if(t == 40) flag = 1;
}
if(flag == 1)
{
for(i = 0 ; i <= 10 ; i++){
HAL_GPIO_WritePin(GPIOE,GPIO_PIN_5,0);
HAL_Delay(t);
HAL_GPIO_WritePin(GPIOE,GPIO_PIN_5,1);
HAL_Delay(41-t);
}
t--;
if(t == 1) flag = 0;
}
}
三、CubexMX配置
1、RCC配置外部高速晶振(精度更高)
2、SYS配置:Debug设置成Serial Wire(否则可能导致芯片自锁)
3、GPIO设置PE5(LED灯的引脚)
4、TIM5设置(搭建属于自己的延迟函数)
5、I2C配置
6、UART配置
为了方便大家对MPU6050的理解,这里利用较为简单常用的串口通讯对MPU6050输出的六轴数据进行打印。当然这里大家也可以使用OLED等屏幕进行显示数据。
四、代码
4.1 MPU6050驱动
1、mpu6050.h代码
#ifndef __MPU6050_H
#define __MPU6050_H
//#include "stm32f4xx_hal.h"
#include "stm32f1xx_hal.h" 用什么系列就是什么
//#define MPU_ACCEL_OFFS_REG 0X06 //accel_offs寄存器,可读取版本号,寄存器手册未提到
//#define MPU_PROD_ID_REG 0X0C //prod id寄存器,在寄存器手册未提到
#define MPU_SELF_TESTX_REG 0X0D //自检寄存器X
#define MPU_SELF_TESTY_REG 0X0E //自检寄存器Y
#define MPU_SELF_TESTZ_REG 0X0F //自检寄存器Z
#define MPU_SELF_TESTA_REG 0X10 //自检寄存器A
#define MPU_SAMPLE_RATE_REG 0X19 //采样频率分频器
#define MPU_CFG_REG 0X1A //配置寄存器
#define MPU_GYRO_CFG_REG 0X1B //陀螺仪配置寄存器
#define MPU_ACCEL_CFG_REG 0X1C //加速度计配置寄存器
#define MPU_MOTION_DET_REG 0X1F //运动检测阀值设置寄存器
#define MPU_FIFO_EN_REG 0X23 //FIFO使能寄存器
#define MPU_I2CMST_CTRL_REG 0X24 //IIC主机控制寄存器
#define MPU_I2CSLV0_ADDR_REG 0X25 //IIC从机0器件地址寄存器
#define MPU_I2CSLV0_REG 0X26 //IIC从机0数据地址寄存器
#define MPU_I2CSLV0_CTRL_REG 0X27 //IIC从机0控制寄存器
#define MPU_I2CSLV1_ADDR_REG 0X28 //IIC从机1器件地址寄存器
#define MPU_I2CSLV1_REG 0X29 //IIC从机1数据地址寄存器
#define MPU_I2CSLV1_CTRL_REG 0X2A //IIC从机1控制寄存器
#define MPU_I2CSLV2_ADDR_REG 0X2B //IIC从机2器件地址寄存器
#define MPU_I2CSLV2_REG 0X2C //IIC从机2数据地址寄存器
#define MPU_I2CSLV2_CTRL_REG 0X2D //IIC从机2控制寄存器
#define MPU_I2CSLV3_ADDR_REG 0X2E //IIC从机3器件地址寄存器
#define MPU_I2CSLV3_REG 0X2F //IIC从机3数据地址寄存器
#define MPU_I2CSLV3_CTRL_REG 0X30 //IIC从机3控制寄存器
#define MPU_I2CSLV4_ADDR_REG 0X31 //IIC从机4器件地址寄存器
#define MPU_I2CSLV4_REG 0X32 //IIC从机4数据地址寄存器
#define MPU_I2CSLV4_DO_REG 0X33 //IIC从机4写数据寄存器
#define MPU_I2CSLV4_CTRL_REG 0X34 //IIC从机4控制寄存器
#define MPU_I2CSLV4_DI_REG 0X35 //IIC从机4读数据寄存器
#define MPU_I2CMST_STA_REG 0X36 //IIC主机状态寄存器
#define MPU_INTBP_CFG_REG 0X37 //中断/旁路设置寄存器
#define MPU_INT_EN_REG 0X38 //中断使能寄存器
#define MPU_INT_STA_REG 0X3A //中断状态寄存器
#define MPU_ACCEL_XOUTH_REG 0X3B //加速度值,X轴高8位寄存器
#define MPU_ACCEL_XOUTL_REG 0X3C //加速度值,X轴低8位寄存器
#define MPU_ACCEL_YOUTH_REG 0X3D //加速度值,Y轴高8位寄存器
#define MPU_ACCEL_YOUTL_REG 0X3E //加速度值,Y轴低8位寄存器
#define MPU_ACCEL_ZOUTH_REG 0X3F //加速度值,Z轴高8位寄存器
#define MPU_ACCEL_ZOUTL_REG 0X40 //加速度值,Z轴低8位寄存器
#define MPU_TEMP_OUTH_REG 0X41 //温度值高八位寄存器
#define MPU_TEMP_OUTL_REG 0X42 //温度值低8位寄存器
#define MPU_GYRO_XOUTH_REG 0X43 //陀螺仪值,X轴高8位寄存器
#define MPU_GYRO_XOUTL_REG 0X44 //陀螺仪值,X轴低8位寄存器
#define MPU_GYRO_YOUTH_REG 0X45 //陀螺仪值,Y轴高8位寄存器
#define MPU_GYRO_YOUTL_REG 0X46 //陀螺仪值,Y轴低8位寄存器
#define MPU_GYRO_ZOUTH_REG 0X47 //陀螺仪值,Z轴高8位寄存器
#define MPU_GYRO_ZOUTL_REG 0X48 //陀螺仪值,Z轴低8位寄存器
#define MPU_I2CSLV0_DO_REG 0X63 //IIC从机0数据寄存器
#define MPU_I2CSLV1_DO_REG 0X64 //IIC从机1数据寄存器
#define MPU_I2CSLV2_DO_REG 0X65 //IIC从机2数据寄存器
#define MPU_I2CSLV3_DO_REG 0X66 //IIC从机3数据寄存器
#define MPU_I2CMST_DELAY_REG 0X67 //IIC主机延时管理寄存器
#define MPU_SIGPATH_RST_REG 0X68 //信号通道复位寄存器
#define MPU_MDETECT_CTRL_REG 0X69 //运动检测控制寄存器
#define MPU_USER_CTRL_REG 0X6A //用户控制寄存器
#define MPU_PWR_MGMT1_REG 0X6B //电源管理寄存器1
#define MPU_PWR_MGMT2_REG 0X6C //电源管理寄存器2
#define MPU_FIFO_CNTH_REG 0X72 //FIFO计数寄存器高八位
#define MPU_FIFO_CNTL_REG 0X73 //FIFO计数寄存器低八位
#define MPU_FIFO_RW_REG 0X74 //FIFO读写寄存器
#define MPU_DEVICE_ID_REG 0X75 //器件ID寄存器,who am i寄存器
//如果AD0脚(9脚)接地,IIC地址为0X68(不包含最低位).
//如果接V3.3,则IIC地址为0X69(不包含最低位).
#define MPU_ADDR 0X68
//因为MPU6050的AD0接GND,所以则读写地址分别为0XD1和0XD0
// (如果AD0接VCC,则读写地址分别为0XD3和0XD2)
#define MPU_READ 0XD1
#define MPU_WRITE 0XD0
uint8_t MPU_Init(void); //初始化MPU6050
uint8_t MPU_Write_Len(uint8_t reg,uint8_t len,uint8_t *buf); //IIC连续写
uint8_t MPU_Read_Len(uint8_t reg,uint8_t len,uint8_t *buf); //IIC连续读
uint8_t MPU_Write_Byte(uint8_t reg,uint8_t data); //IIC写一个字节
uint8_t MPU_Read_Byte(uint8_t reg); //IIC读一个字节
uint8_t MPU_Set_Gyro_Fsr(uint8_t fsr);
uint8_t MPU_Set_Accel_Fsr(uint8_t fsr);
uint8_t MPU_Set_LPF(uint16_t lpf);
uint8_t MPU_Set_Rate(uint16_t rate);
uint8_t MPU_Set_Fifo(uint8_t sens);
float MPU_Get_Temperature(void);
uint8_t MPU_Get_Gyroscope(short *gx,short *gy,short *gz);
uint8_t MPU_Get_Accelerometer(short *ax,short *ay,short *az);
#endif
2、mpu6050.c代码
#include "mpu6050.h"
#include "stdio.h"
//初始化MPU6050
//返回值:0,成功
// 其他,错误代码
uint8_t MPU_Init(void)
{
uint8_t res;
extern I2C_HandleTypeDef hi2c1;
HAL_I2C_Init(&hi2c1);
MPU_Write_Byte(MPU_PWR_MGMT1_REG,0X80); //复位MPU6050
MPU_Write_Byte(MPU_PWR_MGMT1_REG,0X00); //唤醒MPU6050
MPU_Set_Gyro_Fsr(3); //陀螺仪传感器,±2000dps
MPU_Set_Accel_Fsr(0); //加速度传感器,±2g
MPU_Set_Rate(50); //设置采样率50Hz
MPU_Write_Byte(MPU_INT_EN_REG,0X00); //关闭所有中断
MPU_Write_Byte(MPU_USER_CTRL_REG,0X00); //I2C主模式关闭
MPU_Write_Byte(MPU_FIFO_EN_REG,0X00); //关闭FIFO
MPU_Write_Byte(MPU_INTBP_CFG_REG,0X80); //INT引脚低电平有效
res=MPU_Read_Byte(MPU_DEVICE_ID_REG);
printf("\r\nMPU6050:0x%2x\r\n",res);
if(res==MPU_ADDR)//器件ID正确
{
MPU_Write_Byte(MPU_PWR_MGMT1_REG,0X01); //设置CLKSEL,PLL X轴为参考
MPU_Write_Byte(MPU_PWR_MGMT2_REG,0X00); //加速度与陀螺仪都工作
MPU_Set_Rate(50); //设置采样率为50Hz
}else
return 1;
return 0;
}
//设置MPU6050陀螺仪传感器满量程范围
//fsr:0,±250dps;1,±500dps;2,±1000dps;3,±2000dps
//返回值:0,设置成功
// 其他,设置失败
uint8_t MPU_Set_Gyro_Fsr(uint8_t fsr)
{
return MPU_Write_Byte(MPU_GYRO_CFG_REG,fsr<<3);//设置陀螺仪满量程范围
}
//设置MPU6050加速度传感器满量程范围
//fsr:0,±2g;1,±4g;2,±8g;3,±16g
//返回值:0,设置成功
// 其他,设置失败
uint8_t MPU_Set_Accel_Fsr(uint8_t fsr)
{
return MPU_Write_Byte(MPU_ACCEL_CFG_REG,fsr<<3);//设置加速度传感器满量程范围
}
//设置MPU6050的数字低通滤波器
//lpf:数字低通滤波频率(Hz)
//返回值:0,设置成功
// 其他,设置失败
uint8_t MPU_Set_LPF(uint16_t lpf)
{
uint8_t data=0;
if(lpf>=188)data=1;
else if(lpf>=98)data=2;
else if(lpf>=42)data=3;
else if(lpf>=20)data=4;
else if(lpf>=10)data=5;
else data=6;
return MPU_Write_Byte(MPU_CFG_REG,data);//设置数字低通滤波器
}
//设置MPU6050的采样率(假定Fs=1KHz)
//rate:4~1000(Hz)
//返回值:0,设置成功
// 其他,设置失败
uint8_t MPU_Set_Rate(uint16_t rate)
{
uint8_t data;
if(rate>1000)rate=1000;
if(rate<4)rate=4;
data=1000/rate-1;
data=MPU_Write_Byte(MPU_SAMPLE_RATE_REG,data); //设置数字低通滤波器
return MPU_Set_LPF(rate/2); //自动设置LPF为采样率的一半
}
//得到温度值
//返回值:温度值(扩大了100倍)
float MPU_Get_Temperature(void)
{
unsigned char buf[2];
short raw;
float temp;
MPU_Read_Len(MPU_TEMP_OUTH_REG,2,buf);
raw=(buf[0]<<8)| buf[1];
temp=(36.53+((double)raw)/340)*100;
// temp = (long)((35 + (raw / 340)) * 65536L);
return temp/100.0f;
}
//得到陀螺仪值(原始值)
//gx,gy,gz:陀螺仪x,y,z轴的原始读数(带符号)
//返回值:0,成功
// 其他,错误代码
uint8_t MPU_Get_Gyroscope(short *gx,short *gy,short *gz)
{
uint8_t buf[6],res;
res=MPU_Read_Len(MPU_GYRO_XOUTH_REG,6,buf);
if(res==0)
{
*gx=((uint16_t)buf[0]<<8)|buf[1];
*gy=((uint16_t)buf[2]<<8)|buf[3];
*gz=((uint16_t)buf[4]<<8)|buf[5];
}
return res;
}
//得到加速度值(原始值)
//gx,gy,gz:陀螺仪x,y,z轴的原始读数(带符号)
//返回值:0,成功
// 其他,错误代码
uint8_t MPU_Get_Accelerometer(short *ax,short *ay,short *az)
{
uint8_t buf[6],res;
res=MPU_Read_Len(MPU_ACCEL_XOUTH_REG,6,buf);
if(res==0)
{
*ax=((uint16_t)buf[0]<<8)|buf[1];
*ay=((uint16_t)buf[2]<<8)|buf[3];
*az=((uint16_t)buf[4]<<8)|buf[5];
}
return res;;
}
//IIC连续写
uint8_t MPU_Write_Len(uint8_t reg,uint8_t len,uint8_t *buf)
{
extern I2C_HandleTypeDef hi2c1;
HAL_I2C_Mem_Write(&hi2c1, MPU_WRITE, reg, I2C_MEMADD_SIZE_8BIT, buf, len, 0xfff);
HAL_Delay(100);
return 0;
}
//IIC连续读
//addr:器件地址
//reg:要读取的寄存器地址
//len:要读取的长度
//buf:读取到的数据存储区
//返回值:0,正常
// 其他,错误代码
uint8_t MPU_Read_Len(uint8_t reg,uint8_t len,uint8_t *buf)
{
extern I2C_HandleTypeDef hi2c1;
HAL_I2C_Mem_Read(&hi2c1, MPU_READ, reg, I2C_MEMADD_SIZE_8BIT, buf, len, 0xfff);
HAL_Delay(100);
return 0;
}
//IIC写一个字节
//reg:寄存器地址
//data:数据
//返回值:0,正常
// 其他,错误代码
uint8_t MPU_Write_Byte(uint8_t reg,uint8_t data)
{
extern I2C_HandleTypeDef hi2c1;
unsigned char W_Data=0;
W_Data = data;
HAL_I2C_Mem_Write(&hi2c1, MPU_WRITE, reg, I2C_MEMADD_SIZE_8BIT, &W_Data, 1, 0xfff);
HAL_Delay(100);
return 0;
}
//IIC读一个字节
//reg:寄存器地址
//返回值:读到的数据
uint8_t MPU_Read_Byte(uint8_t reg)
{
extern I2C_HandleTypeDef hi2c1;
unsigned char R_Data=0;
HAL_I2C_Mem_Read(&hi2c1, MPU_READ, reg, I2C_MEMADD_SIZE_8BIT, &R_Data, 1, 0xfff);
HAL_Delay(100);
return R_Data;
}
4.2 模拟PWM的闪烁警示灯
1、breath.h代码
#ifndef __BREATH_H
#define __BREATH_H
void breathing_led();
void unled();
void delay_us(int nus);
#endif
2、breath.c代码
#include "breath.h"
#include "stdio.h"
#include "stm32f1xx_hal.h"
#include "gpio.h"
#include "tim.h"
#define DLY_TIM_Handle (&htim5)
unsigned int t,i;
unsigned char flag = 0;
//定时TIM5变us延迟函数
void delay_us(int nus)
{
__HAL_TIM_SET_COUNTER(DLY_TIM_Handle, 0);
__HAL_TIM_ENABLE(DLY_TIM_Handle);
while (__HAL_TIM_GET_COUNTER(DLY_TIM_Handle) < nus)
{
}
__HAL_TIM_DISABLE(DLY_TIM_Handle);
}
///模拟PwM的呼吸闪烁警示灯
void breathing_led()
{
if(flag == 0)
{
for(i = 0 ; i <= 10 ; i++){
HAL_GPIO_WritePin(GPIOE,GPIO_PIN_5,0);
HAL_Delay(t);
HAL_GPIO_WritePin(GPIOE,GPIO_PIN_5,1);
HAL_Delay(41-t);
}
t++;
if(t == 40) flag = 1;
}
if(flag == 1)
{
for(i = 0 ; i <= 10 ; i++){
HAL_GPIO_WritePin(GPIOE,GPIO_PIN_5,0);
HAL_Delay(t);
HAL_GPIO_WritePin(GPIOE,GPIO_PIN_5,1);
HAL_Delay(41-t);
}
t--;
if(t == 1) flag = 0;
}
}
//非刹车状态下的LED灯
void unled()
{
HAL_GPIO_WritePin(GPIOE,GPIO_PIN_5,1);
}
4.3 UART串口通讯
usart.c代码的printf重写
/* USER CODE BEGIN 0 */
//重定义fputc函数
int fputc(int ch, FILE *f)
{
HAL_UART_Transmit(&huart1, (uint8_t *)&ch, 1, 0xffff);
return ch;
}
/* USER CODE END 0 */
4.4 主函数mian
部分添加代码:
/* USER CODE BEGIN Includes */
#include "mpu6050.h"
#include "stdio.h"
#include "breath.h"
/* USER CODE END Includes */
/* USER CODE BEGIN PV */
short x;
short y;
short z;
short ax;
short ay;
short az;
/* USER CODE END PV */
/* USER CODE BEGIN 2 */
MPU_Init();
/* USER CODE END 2 */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
MPU_Get_Gyroscope(&x,&y,&z);
MPU_Get_Accelerometer(&ax,&ay,&az);
// HAL_Delay(100);
if(az>500)
{
breathing_led();
}
if(az<500 && 0<az)
{
unled();
}
printf("\r\nx=%d,y=%d,z=%d",x,y,z);
printf("\r\nax=%d,ay=%d,az=%d",ax,ay,az);
}
/* USER CODE END 3 */
五、实验效果
5.1 串口通讯
代码开源:
MPU6050车辆减速灯代码:链接:
https://pan.baidu.com/s/1jCYHd2KvZ_ka-I98Ur0WAQ 提取码:efy9
ADXL345车辆减速灯代码:链接:
https://pan.baidu.com/s/1j5zhWChrnyK6lB8d90p6_w 提取码:ucvf
相关推荐
- MySQL进阶五之自动读写分离mysql-proxy
-
自动读写分离目前,大量现网用户的业务场景中存在读多写少、业务负载无法预测等情况,在有大量读请求的应用场景下,单个实例可能无法承受读取压力,甚至会对业务产生影响。为了实现读取能力的弹性扩展,分担数据库压...
- 3分钟短文 | Laravel SQL筛选两个日期之间的记录,怎么写?
-
引言今天说一个细分的需求,在模型中,或者使用laravel提供的EloquentORM功能,构造查询语句时,返回位于两个指定的日期之间的条目。应该怎么写?本文通过几个例子,为大家梳理一下。学习时...
- 一文由浅入深带你完全掌握MySQL的锁机制原理与应用
-
本文将跟大家聊聊InnoDB的锁。本文比较长,包括一条SQL是如何加锁的,一些加锁规则、如何分析和解决死锁问题等内容,建议耐心读完,肯定对大家有帮助的。为什么需要加锁呢?...
- 验证Mysql中联合索引的最左匹配原则
-
后端面试中一定是必问mysql的,在以往的面试中好几个面试官都反馈我Mysql基础不行,今天来着重复习一下自己的弱点知识。在Mysql调优中索引优化又是非常重要的方法,不管公司的大小只要后端项目中用到...
- MySQL索引解析(联合索引/最左前缀/覆盖索引/索引下推)
-
目录1.索引基础...
- 你会看 MySQL 的执行计划(EXPLAIN)吗?
-
SQL执行太慢怎么办?我们通常会使用EXPLAIN命令来查看SQL的执行计划,然后根据执行计划找出问题所在并进行优化。用法简介...
- MySQL 从入门到精通(四)之索引结构
-
索引概述索引(index),是帮助MySQL高效获取数据的数据结构(有序),在数据之外,数据库系统还维护者满足特定查询算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构...
- mysql总结——面试中最常问到的知识点
-
mysql作为开源数据库中的榜一大哥,一直是面试官们考察的重中之重。今天,我们来总结一下mysql的知识点,供大家复习参照,看完这些知识点,再加上一些边角细节,基本上能够应付大多mysql相关面试了(...
- mysql总结——面试中最常问到的知识点(2)
-
首先我们回顾一下上篇内容,主要复习了索引,事务,锁,以及SQL优化的工具。本篇文章接着写后面的内容。性能优化索引优化,SQL中索引的相关优化主要有以下几个方面:最好是全匹配。如果是联合索引的话,遵循最...
- MySQL基础全知全解!超详细无废话!轻松上手~
-
本期内容提醒:全篇2300+字,篇幅较长,可搭配饭菜一同“食”用,全篇无废话(除了这句),干货满满,可收藏供后期反复观看。注:MySQL中语法不区分大小写,本篇中...
- 深入剖析 MySQL 中的锁机制原理_mysql 锁详解
-
在互联网软件开发领域,MySQL作为一款广泛应用的关系型数据库管理系统,其锁机制在保障数据一致性和实现并发控制方面扮演着举足轻重的角色。对于互联网软件开发人员而言,深入理解MySQL的锁机制原理...
- Java 与 MySQL 性能优化:MySQL分区表设计与性能优化全解析
-
引言在数据库管理领域,随着数据量的不断增长,如何高效地管理和操作数据成为了一个关键问题。MySQL分区表作为一种有效的数据管理技术,能够将大型表划分为多个更小、更易管理的分区,从而提升数据库的性能和可...
- MySQL基础篇:DQL数据查询操作_mysql 查
-
一、基础查询DQL基础查询语法SELECT字段列表FROM表名列表WHERE条件列表GROUPBY分组字段列表HAVING分组后条件列表ORDERBY排序字段列表LIMIT...
- MySql:索引的基本使用_mysql索引的使用和原理
-
一、索引基础概念1.什么是索引?索引是数据库表的特殊数据结构(通常是B+树),用于...
- 一周热门
-
-
C# 13 和 .NET 9 全知道 :13 使用 ASP.NET Core 构建网站 (1)
-
程序员的开源月刊《HelloGitHub》第 71 期
-
详细介绍一下Redis的Watch机制,可以利用Watch机制来做什么?
-
假如有100W个用户抢一张票,除了负载均衡办法,怎么支持高并发?
-
Java面试必考问题:什么是乐观锁与悲观锁
-
如何将AI助手接入微信(打开ai手机助手)
-
redission YYDS spring boot redission 使用
-
SparkSQL——DataFrame的创建与使用
-
一文带你了解Redis与Memcached? redis与memcached的区别
-
如何利用Redis进行事务处理呢? 如何利用redis进行事务处理呢英文
-
- 最近发表
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)
- c语言 switch (34)
- git commit (34)