百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT技术 > 正文

30天学会Python编程:18. Python数据库编程入门

wptr33 2025-07-10 21:26 20 浏览

18.1 数据库基础

18.1.1 数据库类型对比

18.1.2 DB-API规范

核心接口

  1. connect() - 建立连接
  2. cursor() - 创建游标
  3. execute() - 执行SQL
  4. fetchone()/fetchall() - 获取结果
  5. commit()/rollback() - 事务控制

18.2 SQLite操作

18.2.1 基本CRUD

import sqlite3

# 创建连接
conn = sqlite3.connect('example.db', check_same_thread=False)
cursor = conn.cursor()

# 建表
cursor.execute('''CREATE TABLE IF NOT EXISTS users
               (id INTEGER PRIMARY KEY, name TEXT, age INTEGER)''')

# 插入数据
cursor.execute("INSERT INTO users (name, age) VALUES (?, ?)", ('Alice', 25))

# 查询数据
cursor.execute("SELECT * FROM users WHERE age > ?", (20,))
print(cursor.fetchall())

# 提交事务
conn.commit()
conn.close()

18.2.2 高级特性

# 使用上下文管理器
with sqlite3.connect('example.db') as conn:
    conn.row_factory = sqlite3.Row  # 字典式访问
    cursor = conn.cursor()
    cursor.execute("SELECT * FROM users")
    for row in cursor:
        print(row['name'], row['age'])

# 内存数据库
mem_db = sqlite3.connect(':memory:')

18.3 MySQL/PostgreSQL

18.3.1 PyMySQL示例

import pymysql

# 连接MySQL
conn = pymysql.connect(
    host='localhost',
    user='root',
    password='password',
    database='test',
    cursorclass=pymysql.cursors.DictCursor
)

try:
    with conn.cursor() as cursor:
        # 执行查询
        sql = "SELECT * FROM users WHERE email=%s"
        cursor.execute(sql, ('test@example.com',))
        result = cursor.fetchone()
        print(result)
finally:
    conn.close()

18.3.2 psycopg2示例

import psycopg2

# 连接PostgreSQL
conn = psycopg2.connect(
    host="localhost",
    database="test",
    user="postgres",
    password="password"
)

# 使用with自动提交/回滚
with conn:
    with conn.cursor() as cursor:
        cursor.execute("""
            INSERT INTO products (name, price)
            VALUES (%s, %s)
            RETURNING id
        """, ("Laptop", 999.99))
        product_id = cursor.fetchone()[0]
        print(f"插入记录ID: {product_id}")

18.4 ORM框架

18.4.1 SQLAlchemy核心

from sqlalchemy import create_engine, Column, Integer, String
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker

# 定义模型
Base = declarative_base()

class User(Base):
    __tablename__ = 'users'
    id = Column(Integer, primary_key=True)
    name = Column(String(50))
    age = Column(Integer)

# 创建引擎和会话
engine = create_engine('sqlite:///example.db')
Session = sessionmaker(bind=engine)
session = Session()

# 查询操作
users = session.query(User).filter(User.age > 20).all()
for user in users:
    print(user.name, user.age)

# 插入数据
new_user = User(name='Bob', age=30)
session.add(new_user)
session.commit()

18.4.2 Django ORM

# models.py
from django.db import models

class Product(models.Model):
    name = models.CharField(max_length=100)
    price = models.DecimalField(max_digits=10, decimal_places=2)
    created_at = models.DateTimeField(auto_now_add=True)

# 查询示例
from app.models import Product

# 创建记录
Product.objects.create(name="Mouse", price=29.99)

# 复杂查询
from django.db.models import Q, F
products = Product.objects.filter(
    Q(price__lt=100) | Q(name__startswith="M"),
    created_at__year=2023
).annotate(
    discounted_price=F('price')*0.9
)

18.5 NoSQL数据库

18.5.1 MongoDB

from pymongo import MongoClient

# 连接MongoDB
client = MongoClient('mongodb://localhost:27017/')
db = client['mydatabase']
collection = db['users']

# 插入文档
user = {"name": "Alice", "age": 25, "hobbies": ["coding", "reading"]}
inserted_id = collection.insert_one(user).inserted_id

# 聚合查询
pipeline = [
    {"$match": {"age": {"$gt": 20}}},
    {"$group": {"_id": "$name", "count": {"$sum": 1}}}
]
results = collection.aggregate(pipeline)

18.5.2 Redis

import redis

# 连接Redis
r = redis.Redis(host='localhost', port=6379, db=0)

# 字符串操作
r.set('foo', 'bar')
print(r.get('foo'))  # b'bar'

# 哈希操作
r.hset('user:1000', mapping={
    'name': 'Alice',
    'age': '25'
})
print(r.hgetall('user:1000'))  # {b'name': b'Alice', b'age': b'25'}

18.6 数据库连接池

18.6.1 连接池实现

from sqlalchemy import create_engine
from sqlalchemy.pool import QueuePool

# 创建连接池
engine = create_engine(
    'mysql+pymysql://user:password@localhost/db',
    poolclass=QueuePool,
    pool_size=5,
    max_overflow=10,
    pool_timeout=30
)

# 使用连接
with engine.connect() as conn:
    result = conn.execute("SELECT * FROM users")
    print(result.fetchall())

18.6.2 连接池管理

import psycopg2
from psycopg2 import pool

# 创建连接池
connection_pool = psycopg2.pool.SimpleConnectionPool(
    minconn=1,
    maxconn=10,
    host="localhost",
    database="test",
    user="postgres",
    password="password"
)

# 获取连接
conn = connection_pool.getconn()
try:
    with conn.cursor() as cursor:
        cursor.execute("SELECT * FROM products")
        print(cursor.fetchall())
finally:
    connection_pool.putconn(conn)

18.7 应用举例

案例1:电商订单

from sqlalchemy import create_engine, ForeignKey
from sqlalchemy.orm import relationship, sessionmaker
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, Float, DateTime

Base = declarative_base()

class User(Base):
    __tablename__ = 'users'
    id = Column(Integer, primary_key=True)
    name = Column(String(50))
    orders = relationship("Order", back_populates="user")

class Product(Base):
    __tablename__ = 'products'
    id = Column(Integer, primary_key=True)
    name = Column(String(100))
    price = Column(Float)
    order_items = relationship("OrderItem", back_populates="product")

class Order(Base):
    __tablename__ = 'orders'
    id = Column(Integer, primary_key=True)
    user_id = Column(Integer, ForeignKey('users.id'))
    created_at = Column(DateTime)
    user = relationship("User", back_populates="orders")
    items = relationship("OrderItem", back_populates="order")

class OrderItem(Base):
    __tablename__ = 'order_items'
    id = Column(Integer, primary_key=True)
    order_id = Column(Integer, ForeignKey('orders.id'))
    product_id = Column(Integer, ForeignKey('products.id'))
    quantity = Column(Integer)
    order = relationship("Order", back_populates="items")
    product = relationship("Product", back_populates="order_items")

# 使用示例
engine = create_engine('sqlite:///ecommerce.db')
Base.metadata.create_all(engine)
Session = sessionmaker(bind=engine)
session = Session()

# 创建测试数据
new_user = User(name="Alice")
session.add(new_user)

product1 = Product(name="Laptop", price=999.99)
product2 = Product(name="Mouse", price=29.99)
session.add_all([product1, product2])

order = Order(user=new_user)
order.items = [
    OrderItem(product=product1, quantity=1),
    OrderItem(product=product2, quantity=2)
]
session.add(order)
session.commit()

# 查询用户订单
user = session.query(User).filter_by(name="Alice").first()
for order in user.orders:
    print(f"订单 {order.id}:")
    for item in order.items:
        print(f"  - {item.product.name} x{item.quantity}")

案例2:缓存策略实现

import sqlite3
import redis
import json
from datetime import datetime

class CachedDatabase:
    """带Redis缓存的数据库访问层"""
    
    def __init__(self, db_file=':memory:'):
        self.redis = redis.Redis(host='localhost', port=6379, db=0)
        self.db_conn = sqlite3.connect(db_file)
        self._init_db()
    
    def _init_db(self):
        cursor = self.db_conn.cursor()
        cursor.execute('''CREATE TABLE IF NOT EXISTS articles
                       (id INTEGER PRIMARY KEY, title TEXT, content TEXT, 
                       created_at TIMESTAMP)''')
        self.db_conn.commit()
    
    def get_article(self, article_id):
        """获取文章(优先从缓存读取)"""
        cache_key = f"article:{article_id}"
        cached_data = self.redis.get(cache_key)
        
        if cached_data:
            print("从缓存读取")
            return json.loads(cached_data)
        
        print("从数据库读取")
        cursor = self.db_conn.cursor()
        cursor.execute("SELECT * FROM articles WHERE id=?", (article_id,))
        row = cursor.fetchone()
        
        if row:
            article = {
                'id': row[0],
                'title': row[1],
                'content': row[2],
                'created_at': row[3]
            }
            # 写入缓存(60秒过期)
            self.redis.setex(cache_key, 60, json.dumps(article))
            return article
        return None
    
    def create_article(self, title, content):
        """创建新文章(自动清除相关缓存)"""
        cursor = self.db_conn.cursor()
        created_at = datetime.now().isoformat()
        cursor.execute("INSERT INTO articles (title, content, created_at) VALUES (?, ?, ?)",
                      (title, content, created_at))
        self.db_conn.commit()
        
        # 获取新插入的ID
        article_id = cursor.lastrowid
        
        # 清除可能存在的缓存
        self.redis.delete(f"article:{article_id}")
        
        return article_id

# 使用示例
cache_db = CachedDatabase()

# 创建测试文章
article_id = cache_db.create_article(
    "Python数据库编程",
    "本文介绍Python中的各种数据库操作方法..."
)

# 第一次读取(从数据库)
article = cache_db.get_article(article_id)

# 第二次读取(从缓存)
article = cache_db.get_article(article_id)

18.8 知识图谱


持续更新Python编程学习日志与技巧,敬请关注!


#编程# #学习# #在头条记录我的2025# #python#


相关推荐

MySQL进阶五之自动读写分离mysql-proxy

自动读写分离目前,大量现网用户的业务场景中存在读多写少、业务负载无法预测等情况,在有大量读请求的应用场景下,单个实例可能无法承受读取压力,甚至会对业务产生影响。为了实现读取能力的弹性扩展,分担数据库压...

Postgres vs MySQL_vs2022连接mysql数据库

...

3分钟短文 | Laravel SQL筛选两个日期之间的记录,怎么写?

引言今天说一个细分的需求,在模型中,或者使用laravel提供的EloquentORM功能,构造查询语句时,返回位于两个指定的日期之间的条目。应该怎么写?本文通过几个例子,为大家梳理一下。学习时...

一文由浅入深带你完全掌握MySQL的锁机制原理与应用

本文将跟大家聊聊InnoDB的锁。本文比较长,包括一条SQL是如何加锁的,一些加锁规则、如何分析和解决死锁问题等内容,建议耐心读完,肯定对大家有帮助的。为什么需要加锁呢?...

验证Mysql中联合索引的最左匹配原则

后端面试中一定是必问mysql的,在以往的面试中好几个面试官都反馈我Mysql基础不行,今天来着重复习一下自己的弱点知识。在Mysql调优中索引优化又是非常重要的方法,不管公司的大小只要后端项目中用到...

MySQL索引解析(联合索引/最左前缀/覆盖索引/索引下推)

目录1.索引基础...

你会看 MySQL 的执行计划(EXPLAIN)吗?

SQL执行太慢怎么办?我们通常会使用EXPLAIN命令来查看SQL的执行计划,然后根据执行计划找出问题所在并进行优化。用法简介...

MySQL 从入门到精通(四)之索引结构

索引概述索引(index),是帮助MySQL高效获取数据的数据结构(有序),在数据之外,数据库系统还维护者满足特定查询算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构...

mysql总结——面试中最常问到的知识点

mysql作为开源数据库中的榜一大哥,一直是面试官们考察的重中之重。今天,我们来总结一下mysql的知识点,供大家复习参照,看完这些知识点,再加上一些边角细节,基本上能够应付大多mysql相关面试了(...

mysql总结——面试中最常问到的知识点(2)

首先我们回顾一下上篇内容,主要复习了索引,事务,锁,以及SQL优化的工具。本篇文章接着写后面的内容。性能优化索引优化,SQL中索引的相关优化主要有以下几个方面:最好是全匹配。如果是联合索引的话,遵循最...

MySQL基础全知全解!超详细无废话!轻松上手~

本期内容提醒:全篇2300+字,篇幅较长,可搭配饭菜一同“食”用,全篇无废话(除了这句),干货满满,可收藏供后期反复观看。注:MySQL中语法不区分大小写,本篇中...

深入剖析 MySQL 中的锁机制原理_mysql 锁详解

在互联网软件开发领域,MySQL作为一款广泛应用的关系型数据库管理系统,其锁机制在保障数据一致性和实现并发控制方面扮演着举足轻重的角色。对于互联网软件开发人员而言,深入理解MySQL的锁机制原理...

Java 与 MySQL 性能优化:MySQL分区表设计与性能优化全解析

引言在数据库管理领域,随着数据量的不断增长,如何高效地管理和操作数据成为了一个关键问题。MySQL分区表作为一种有效的数据管理技术,能够将大型表划分为多个更小、更易管理的分区,从而提升数据库的性能和可...

MySQL基础篇:DQL数据查询操作_mysql 查

一、基础查询DQL基础查询语法SELECT字段列表FROM表名列表WHERE条件列表GROUPBY分组字段列表HAVING分组后条件列表ORDERBY排序字段列表LIMIT...

MySql:索引的基本使用_mysql索引的使用和原理

一、索引基础概念1.什么是索引?索引是数据库表的特殊数据结构(通常是B+树),用于...