每日一题 |10W QPS高并发限流方案设计(含真实代码)
wptr33 2025-07-19 23:04 16 浏览
面试场景还原
面试官:“如果系统要承载10W QPS的高并发流量,你会如何设计限流方案?”
你:“(稳住,我要从限流算法到分布式架构全盘分析)…”
一、为什么需要限流?
核心矛盾:系统资源(CPU/内存/数据库连接)有限,突发流量可能导致服务雪崩。
目标:在保障系统稳定的前提下,尽可能处理更多请求。
关键指标:QPS(每秒查询量)、并发线程数、响应时间。
二、单机限流 vs 分布式限流
类型 | 适用场景 | 优缺点 |
单机限流 | 单节点服务、网关层 | 实现简单,但集群流量不均 |
分布式限流 | 微服务集群、云原生架构 | 精准控制全局流量,但实现复杂 |
三、四大经典限流算法及代码实战
1固定窗口计数器
原理图:
规则:
- 每1秒重置计数器
- 阈值:1000次/秒
PHP实现:
class FixedWindowLimiter {
private $redis;
private $key;
private $limit;
private $windowSize;
public function __construct($redis, $key, $limit, $windowSize = 1) {
$this->redis = $redis;
$this->key = $key;
$this->limit = $limit;
$this->windowSize = $windowSize;
}
public function allow() {
$now = time();
$current = $this->redis->get($this->key);
if ($current && $current >= $this->limit) {
return false;
}
$this->redis->multi();
$this->redis->incr($this->key);
$this->redis->expire($this->key, $this->windowSize);
$this->redis->exec();
return true;
}
}
// 使用示例
$redis = new Redis();
$redis->connect('127.0.0.1', 6379);
$limiter = new FixedWindowLimiter($redis, 'api_limit', 1000);
if (!$limiter->allow()) {
http_response_code(429);
exit('Too many requests');
}
优缺点:
- 实现简单,内存占用低
- 窗口切换时可能突发2倍流量
2滑动窗口计数器
原理图:
规则:
- 将1秒拆分为10个子窗口(每0.1秒一个)
- 动态统计最近10个子窗口的总和
PHP实现(Redis):
class SlidingWindowLimiter {
private $redis;
private $keyPrefix;
private $sublimit;
private $subWindows;
public function __construct($redis, $keyPrefix, $sublimit, $subWindows = 10) {
$this->redis = $redis;
$this->keyPrefix = $keyPrefix;
$this->sublimit = $sublimit;
$this->subWindows = $subWindows;
}
public function allow($userId) {
$now = microtime(true);
$windowSize = 1; // 1秒窗口
$subWindowSize = $windowSize / $this->subWindows;
// 生成子窗口Key
$currentSubWindow = floor($now / $subWindowSize);
$keys = [];
for ($i = 0; $i < $this->subWindows; $i++) {
$keys[] = "{$this->keyPrefix}:{$userId}:" . ($currentSubWindow - $i);
}
// Redis事务统计
$this->redis->multi();
foreach ($keys as $key) {
$this->redis->incr($key);
$this->redis->expire($key, $windowSize);
}
$results = $this->redis->exec();
$total = array_sum(array_slice($results, 0, $this->subWindows));
return $total <= $this->sublimit;
}
}
优缺点:
- 解决固定窗口临界问题
- 内存消耗较高(需存储多个子窗口)
3令牌桶算法
原理图:
规则:
- 令牌生成速率:1000个/秒
- 桶最大容量:2000个(应对突发流量)
PHP实现(Redis原子操作):
class TokenBucketLimiter {
private $redis;
private $rate;
private $capacity;
private $key;
public function __construct($redis, $key, $rate, $capacity) {
$this->redis = $redis;
$this->key = $key;
$this->rate = $rate;
$this->capacity = $capacity;
}
public function allow() {
$now = microtime(true);
$data = $this->redis->hMGet($this->key, ['tokens', 'last_time']);
$tokens = $data['tokens'] ?? $this->capacity;
$lastTime = $data['last_time'] ?? $now;
// 计算新令牌
$timePassed = $now - $lastTime;
$newTokens = $timePassed * $this->rate;
$tokens = min($tokens + $newTokens, $this->capacity);
if ($tokens < 1) {
return false;
}
// 消费令牌
$this->redis->hSet($this->key, 'tokens', $tokens - 1);
$this->redis->hSet($this->key, 'last_time', $now);
return true;
}
}
优缺点:
- 允许突发流量,平滑限流
- 需要维护令牌状态,实现较复杂
4漏桶算法
原理图:
规则:
- 流出速率:1000次/秒
- 桶容量:500次(排队等待)
PHP实现(队列模拟):
class LeakyBucketLimiter {
private $queue;
private $leakRate;
private $capacity;
private $lastLeakTime;
public function __construct($leakRate, $capacity) {
$this->queue = new SplQueue();
$this->leakRate = $leakRate; // 每秒处理数
$this->capacity = $capacity;
$this->lastLeakTime = microtime(true);
}
public function allow() {
$this->leak();
if ($this->queue->count() >= $this->capacity) {
return false;
}
$this->queue->enqueue(microtime(true));
return true;
}
private function leak() {
$now = microtime(true);
$delta = $now - $this->lastLeakTime;
$leakCount = $delta * $this->leakRate;
while ($leakCount > 0 && !$this->queue->isEmpty()) {
$this->queue->dequeue();
$leakCount--;
}
$this->lastLeakTime = $now;
}
}
优缺点:
- 严格限制流量速率
- 无法应对突发流量
四、算法对比与选型建议
算法 | 适用场景 | 优势 | 缺陷 |
固定窗口计数器 | 简单低频场景 | 实现简单 | 临界突发流量 |
滑动窗口计数器 | API网关 | 平滑限流 | 内存消耗高 |
令牌桶 | 突发流量容忍型系统 | 允许突发 | 实现复杂度高 |
漏桶 | 恒定速率处理场景(如支付) | 严格控速 | 无弹性 |
五、高并发算法优化技巧
- Redis Pipeline:批量操作减少网络开销
- Lua脚本:保证原子性(如计数器自增+过期时间设置)
- 本地缓存:结合本地Guava Cache减少Redis访问
- 预热机制:系统启动时缓慢增加限流阈值
六、高并发场景下的优化策略
- 分层限流:Nginx网关层 + 服务层 + 细粒度方法级限流。
- 动态调整阈值:结合监控系统(Prometheus)实时调节。
- 降级熔断:Hystrix/Sentinel触发限流后自动降级。
- 集群扩缩容:K8s自动扩缩容 + 弹性计算资源。
七、大厂真实方案参考
- Google:Guava RateLimiter单机令牌桶。
- 阿里:Sentinel集群流控 + Warm Up预热机制。
- Spring Cloud Gateway:基于Redis的分布式限流过滤器。
面试加分点
“我会根据业务场景选择算法,比如API网关用令牌桶保证突发流量,支付系统用漏桶控制恒定速率。分布式场景下,优先使用Redis+Lua保证原子性,并配合Sentinel做熔断降级…”
相关推荐
- MySQL进阶五之自动读写分离mysql-proxy
-
自动读写分离目前,大量现网用户的业务场景中存在读多写少、业务负载无法预测等情况,在有大量读请求的应用场景下,单个实例可能无法承受读取压力,甚至会对业务产生影响。为了实现读取能力的弹性扩展,分担数据库压...
- 3分钟短文 | Laravel SQL筛选两个日期之间的记录,怎么写?
-
引言今天说一个细分的需求,在模型中,或者使用laravel提供的EloquentORM功能,构造查询语句时,返回位于两个指定的日期之间的条目。应该怎么写?本文通过几个例子,为大家梳理一下。学习时...
- 一文由浅入深带你完全掌握MySQL的锁机制原理与应用
-
本文将跟大家聊聊InnoDB的锁。本文比较长,包括一条SQL是如何加锁的,一些加锁规则、如何分析和解决死锁问题等内容,建议耐心读完,肯定对大家有帮助的。为什么需要加锁呢?...
- 验证Mysql中联合索引的最左匹配原则
-
后端面试中一定是必问mysql的,在以往的面试中好几个面试官都反馈我Mysql基础不行,今天来着重复习一下自己的弱点知识。在Mysql调优中索引优化又是非常重要的方法,不管公司的大小只要后端项目中用到...
- MySQL索引解析(联合索引/最左前缀/覆盖索引/索引下推)
-
目录1.索引基础...
- 你会看 MySQL 的执行计划(EXPLAIN)吗?
-
SQL执行太慢怎么办?我们通常会使用EXPLAIN命令来查看SQL的执行计划,然后根据执行计划找出问题所在并进行优化。用法简介...
- MySQL 从入门到精通(四)之索引结构
-
索引概述索引(index),是帮助MySQL高效获取数据的数据结构(有序),在数据之外,数据库系统还维护者满足特定查询算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构...
- mysql总结——面试中最常问到的知识点
-
mysql作为开源数据库中的榜一大哥,一直是面试官们考察的重中之重。今天,我们来总结一下mysql的知识点,供大家复习参照,看完这些知识点,再加上一些边角细节,基本上能够应付大多mysql相关面试了(...
- mysql总结——面试中最常问到的知识点(2)
-
首先我们回顾一下上篇内容,主要复习了索引,事务,锁,以及SQL优化的工具。本篇文章接着写后面的内容。性能优化索引优化,SQL中索引的相关优化主要有以下几个方面:最好是全匹配。如果是联合索引的话,遵循最...
- MySQL基础全知全解!超详细无废话!轻松上手~
-
本期内容提醒:全篇2300+字,篇幅较长,可搭配饭菜一同“食”用,全篇无废话(除了这句),干货满满,可收藏供后期反复观看。注:MySQL中语法不区分大小写,本篇中...
- 深入剖析 MySQL 中的锁机制原理_mysql 锁详解
-
在互联网软件开发领域,MySQL作为一款广泛应用的关系型数据库管理系统,其锁机制在保障数据一致性和实现并发控制方面扮演着举足轻重的角色。对于互联网软件开发人员而言,深入理解MySQL的锁机制原理...
- Java 与 MySQL 性能优化:MySQL分区表设计与性能优化全解析
-
引言在数据库管理领域,随着数据量的不断增长,如何高效地管理和操作数据成为了一个关键问题。MySQL分区表作为一种有效的数据管理技术,能够将大型表划分为多个更小、更易管理的分区,从而提升数据库的性能和可...
- MySQL基础篇:DQL数据查询操作_mysql 查
-
一、基础查询DQL基础查询语法SELECT字段列表FROM表名列表WHERE条件列表GROUPBY分组字段列表HAVING分组后条件列表ORDERBY排序字段列表LIMIT...
- MySql:索引的基本使用_mysql索引的使用和原理
-
一、索引基础概念1.什么是索引?索引是数据库表的特殊数据结构(通常是B+树),用于...
- 一周热门
-
-
C# 13 和 .NET 9 全知道 :13 使用 ASP.NET Core 构建网站 (1)
-
程序员的开源月刊《HelloGitHub》第 71 期
-
详细介绍一下Redis的Watch机制,可以利用Watch机制来做什么?
-
假如有100W个用户抢一张票,除了负载均衡办法,怎么支持高并发?
-
Java面试必考问题:什么是乐观锁与悲观锁
-
如何将AI助手接入微信(打开ai手机助手)
-
redission YYDS spring boot redission 使用
-
SparkSQL——DataFrame的创建与使用
-
一文带你了解Redis与Memcached? redis与memcached的区别
-
如何利用Redis进行事务处理呢? 如何利用redis进行事务处理呢英文
-
- 最近发表
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)
- c语言 switch (34)
- git commit (34)