Python数学建模系列(四):数值逼近
wptr33 2025-07-23 18:43 6 浏览
若文中数学公式显示有问题 可查看文章原文
菜鸟学习记:第四十二天
1. 一维插值
插值:求过已知有限个数据点的近似函数。
插值函数经过样本点,拟合函数一般基于最小二乘法尽量靠近所有样本并穿过。常见差值方法有拉格朗日插值法、分段插值法、样条插值法。
image.png
interp1d(x, y) 计算一维插值
1.1 线性插值与样条插值(B-spline)
例1:某电学元件的电压数据记录在0~2.25πA范围与电流关系满足正弦函数,分别用线性插值和样条插值方法给出经过数据点的数值逼近函数曲线。
Demo代码
import matplotlib
import numpy as np
from scipy import interpolate
import matplotlib.pyplot as plt
# 引入中文字体
font = {
"family": "Microsoft YaHei"
}
matplotlib.rc("font", **font)
# 初始数据量 0 - 2.25pi 分为10份 均匀分
x = np.linspace(0, 2.25 * np.pi, 10)
y = np.sin(x)
# 得到差值函数 (使用线性插值)
f_linear = interpolate.interp1d(x, y)
# 新数据 0 - 2.25pi 分为100份 均匀分 (线性插值)
x_new = np.linspace(0, 2.25 * np.pi, 100)
y_new = f_linear(x_new)
# 使用B-spline插值
tck = interpolate.splrep(x, y)
y_bspline = interpolate.splev(x_new, tck)
# 可视化
plt.xlabel(u'安培/A')
plt.ylabel(u'伏特/V')
plt.plot(x, y, "o", label=u"原始数据")
plt.plot(x_new, f_linear(x_new), label=u"线性插值")
plt.plot(x_new, y_bspline, label=u"B-spline插值")
plt.legend()
plt.show()
输出:
image.png
涉及知识点:
- numpy.linspace
- scipy.interpolate.interp1d
- scipy.interpolate.splrep
1.2 高阶样条插值
随着插值节点增多,多项式次数也变高,插值曲线在一些区域出现跳跃,并且越来越偏离原始曲线,称为龙格现象。
例2:某电学元件的电压数据记录在0~10A范围与电流关系满足正弦函数,分别用0~5阶样条插值方法给出经过数据点的数值逼近函数曲线。
Demo代码
import matplotlib
import numpy as np
from matplotlib import pyplot as plt
from scipy import interpolate
font = {
"family": "Microsoft YaHei"
}
matplotlib.rc("font", **font)
# 创建数据点集
x = np.linspace(0, 10, 11)
y = np.sin(x)
# 绘制数据点集
plt.figure(figsize=(12, 9))
plt.plot(x, y, 'ro')
# 根据kind创建interp1d对象f、计算插值结果
xnew = np.linspace(0, 10, 101)
# 邻接 0阶 线性 二阶
for kind in ['nearest', 'zero', 'linear', 'quadratic']:
f = interpolate.interp1d(x, y, kind=kind)
ynew = f(xnew)
plt.plot(xnew, ynew, label=str(kind))
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
plt.legend(loc="lower right")
plt.show()
输出:
分别对每一种插值方式进行查看
1.当kind = nearest时
import matplotlib
import numpy as np
from matplotlib import pyplot as plt
from scipy import interpolate
font = {
"family": "Microsoft YaHei"
}
matplotlib.rc("font", **font)
# 创建数据点集
x = np.linspace(0, 10, 11)
y = np.sin(x)
# 得插值函数
f = interpolate.interp1d(x, y, kind='nearest')
# 新数据
x_new = np.linspace(0,10,101)
y_new = f(x_new)
# 可视化
plt.plot(x, y, 'o', x_new, y_new, '-')
plt.show()
image.png
2.当kind = zero时
import matplotlib
import numpy as np
from matplotlib import pyplot as plt
from scipy import interpolate
font = {
"family": "Microsoft YaHei"
}
matplotlib.rc("font", **font)
# 创建数据点集
x = np.linspace(0, 10, 11)
y = np.sin(x)
# 得插值函数
f = interpolate.interp1d(x, y, kind='zero')
# 新数据
x_new = np.linspace(0,10,101)
y_new = f(x_new)
# 可视化
plt.plot(x, y, 'o', x_new, y_new, '-')
plt.show()
image.png
3.当kind = linear时
import matplotlib
import numpy as np
from matplotlib import pyplot as plt
from scipy import interpolate
font = {
"family": "Microsoft YaHei"
}
matplotlib.rc("font", **font)
# 创建数据点集
x = np.linspace(0, 10, 11)
y = np.sin(x)
# 得插值函数
f = interpolate.interp1d(x, y, kind='linear')
# 新数据
x_new = np.linspace(0,10,101)
y_new = f(x_new)
# 可视化
plt.plot(x, y, 'o', x_new, y_new, '-')
plt.show()
image.png
4.当kind = quadratic时
import matplotlib
import numpy as np
from matplotlib import pyplot as plt
from scipy import interpolate
font = {
"family": "Microsoft YaHei"
}
matplotlib.rc("font", **font)
# 创建数据点集
x = np.linspace(0, 10, 11)
y = np.sin(x)
# 得插值函数
f = interpolate.interp1d(x, y, kind='quadratic')
# 新数据
x_new = np.linspace(0,10,101)
y_new = f(x_new)
# 可视化
plt.plot(x, y, 'o', x_new, y_new, '-')
plt.show()
image.png
5.当kind = cubic时
import matplotlib
import numpy as np
from matplotlib import pyplot as plt
from scipy import interpolate
font = {
"family": "Microsoft YaHei"
}
matplotlib.rc("font", **font)
# 创建数据点集
x = np.linspace(0, 10, 11)
y = np.sin(x)
# 得插值函数
f = interpolate.interp1d(x, y, kind='cubic')
# 新数据
x_new = np.linspace(0,10,101)
y_new = f(x_new)
# 可视化
plt.plot(x, y, 'o', x_new, y_new, '-')
plt.show()
image.png
2. 二维插值
interp2d(x, y, z, kind=“'') 计算二维插值
2.1 图像模糊处理——样条插值
例3:某图像表达式为,完成图像的二维插值使其变清晰。
Demo代码
import numpy as np
from scipy import interpolate
import matplotlib.pyplot as plt
def func(x, y):
return (x + y) * np.exp(-5.0 * (x ** 2 + y ** 2))
# X-Y轴分为15*15的网格
# x, y = np.mgrid[-1:1:15j, -1:1:15j]
x = np.linspace(-1, 1, 15)
y = np.linspace(-1, 1, 15)
x, y = np.meshgrid(x, y)
fvals = func(x, y)
# 二维插值
newfunc = interpolate.interp2d(x, y, fvals, kind='cubic')
# 计算100*100网格上插值
xnew = np.linspace(-1, 1, 100)
ynew = np.linspace(-1, 1, 100)
fnew = newfunc(xnew, ynew)
xnew, ynew = np.meshgrid(xnew, ynew)
plt.subplot(121)
# extent x轴和y轴范围
im1 = plt.imshow(fvals, extent=[-1, 1, -1, 1], interpolation="nearest", origin="lower",cmap="Reds")
plt.colorbar(im1)
plt.subplot(122)
im2 = plt.imshow(fnew, extent=[-1, 1, -1, 1], interpolation="nearest", origin="lower",cmap="Reds")
plt.colorbar(im2)
plt.show()
输出:
2.2 二维插值的三维图
例4:某图像表达式为,完成三维图像的二维插值可视化。
其实就是在二维插值基础上 实现了三维图像的绘制
Demo代码
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib as mpl
from scipy import interpolate
import matplotlib.cm as cm
import matplotlib.pyplot as plt
def func(x, y):
return (x + y) * np.exp(-5.0 * (x ** 2 + y ** 2))
# X-Y轴分为20*20的网格
x = np.linspace(-1, 1, 20)
y = np.linspace(-1, 1, 20)
x, y = np.meshgrid(x, y)
fvals = func(x, y)
# 绘制分图1
fig = plt.figure(figsize=(9, 6))
ax = plt.subplot(1, 2, 1, projection='3d')
surf = ax.plot_surface(x, y, fvals, rstride=2, cstride=2, cmap=cm.coolwarm, linewidth=0.5, antialiased=True)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('f(x,y)')
plt.colorbar(surf, shrink=0.5, aspect=5) # 添加颜色条标注
# 二维插值
newfunc = interpolate.interp2d(x, y, fvals, kind='cubic')
# 计算100*100网格上插值
xnew = np.linspace(-1, 1, 100)
ynew = np.linspace(-1, 1, 100)
fnew = newfunc(xnew, ynew)
xnew, ynew = np.meshgrid(xnew, ynew)
ax2 = plt.subplot(1, 2, 2, projection='3d')
surf2 = ax2.plot_surface(xnew, ynew, fnew, rstride=2, cstride=2, cmap=cm.coolwarm, linewidth=0.5, antialiased=True)
ax2.set_xlabel('xnew')
ax2.set_ylabel('ynew')
ax2.set_zlabel('fnew(x,y)')
plt.colorbar(surf2, shrink=0.5, aspect=5)
# 标注
plt.show()
输出:
3. 最小二乘拟合
拟合指的是已知某函数的若干离散函数值{f1,f2,…,fn},通过调整该函 数中若干待定系数f(λ1, λ2,…,λn),使得该函数与已知点集的差别(最小二乘意义)最小。
如果待定函数是线性,就叫线性拟合或者线性回归(主要在统计中),否则叫作非线性拟合或者非线性回归。表达式也可以是分段函数,这种情况下叫作样条拟合。
从几何意义上讲,拟合是给定了空间中的一些点,找到一个已知形式、未知参数的连续曲面来最大限度地逼近这些点;而插值是找到一个(或几个分片光滑的)连续曲面来穿过这些点。
选择参数c使得拟合模型与实际观测值在曲线拟合各点的残差(或离差)ek=yk-f(xk,c)的加权平方和达到最小,此时所求曲线称作在加权最小二乘意义下对数据的拟合曲线,这种方法叫做最小二乘法。
涉及知识点
from scipy.optimize import leastsq
例5:对下列电学元件的电压电流记录结果进行最小二乘拟合,绘制相应曲线。 电流(A)8.19 2.72 6.39 8.71 4.7 2.66 3.78 电压(V)7.01 2.78 6.47 6.71 4.1 4.23 4.05
在这里插入图片描述
Demo代码
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import leastsq
# 引入中文字体
font = {
"family": "Microsoft YaHei"
}
matplotlib.rc("font", **font)
# 设置图字号
plt.figure(figsize=(9, 9))
# 初始数据值
X = np.array([8.19, 2.72, 6.39, 8.71, 4.7, 2.66, 3.78])
Y = np.array([7.01, 2.78, 6.47, 6.71, 4.1, 4.23, 4.05])
# 计算以p为参数的直线与原始数据之间误差
def f(p):
k, b = p
return (Y - (k * X + b))
# leastsq使得f的输出数组的平方和最小,参数初始值k、b设为[1,0]
r = leastsq(f, [1, 0])
# 得到计算出的最优k、b
k, b = r[0]
# 可视化
plt.scatter(X, Y, s=100, alpha=1.0, marker='o', label=u'数据点')
x = np.linspace(0, 10, 1000)
y = k * x + b
ax = plt.gca()
plt.plot(x, y, color='r', linewidth=5, linestyle=":", markersize=20, label=u'拟合曲线')
plt.legend(loc=0, numpoints=1)
leg = plt.gca().get_legend()
ltext = leg.get_texts()
plt.setp(ltext, fontsize='xx-large')
plt.xlabel(u'安培/A')
plt.ylabel(u'伏特/V')
plt.xlim(0, x.max() * 1.1)
plt.ylim(0, y.max() * 1.1)
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
plt.legend(loc='upper left')
plt.show()
输出:
结语
学习来源:B站及其课堂PPT,对其中代码进行了复现
文章仅作为学习笔记,记录从0到1的一个过程
希望对您有所帮助,如有错误欢迎小伙伴指正~
相关推荐
- oracle中merge into语句详解(oracle的merge语句)
-
由于工作中使用,研究了mergeinto语句是insert与update语句的结合,可以同时实现update和insert的功能。一、mergeinto语句的语法。MERGEINTOsch...
- N张图告诉你K-DB为什么能全面兼容Oracle?
-
不是每一款数据库都能全面兼容Oracle,就像不是所有数据库都可以被称之为K-DB。一般数据库能做到的SQL标准和函数上兼容Oracle,而K-DB则能实现更多,在数据库体系架构、集群方式、数据库对象...
- ORACLE 错误代码及解决办法(oracle错误码942)
-
ORA-00001:违反唯一约束条件(.)错误说明:当在唯一索引所对应的列上键入重复值时,会触发此异常。ORA-00017:请求会话以设置跟踪事件ORA-00018:超出最大会话数ORA-00...
- SQL知识大全三):SQL中的字符串处理和条件查询
-
点击上方蓝字关注我们今天是SQL系列的第三讲,我们会讲解条件查询,文本处理,百分比,行数限制,格式化以及子查询。...
- LabVIEW实现Oracle数据库的访问(深入浅出labview数据库应用)
-
1.安装Oracle客户端下载:从Oracle官方网站下载适用于Windows操作系统的Oracle驱动程序。确保下载的版本与LabVIEW环境和操作系统兼容。...
- Oracle查询语句,你知道几个?(oracle常用查询语句)
-
介绍以下非常有用的Oracle查询语句,主要涵盖了日期操作,获取服务器信息,获取执行状态,计算数据库大小等方面的查询。日期/时间查询1、获取当前月份的第一天运行这个命令能快速返回当前月份的第一天,可...
- Oracle数据库中判断字段不为空?(oracle数据库中判断字段不为空的函数)
-
Oracle数据库中如何判断字段不为空在Oracle数据库中,判断字段(列)不为空通常涉及到几种不同的场景和需求。下面是一些常见的方法来检查字段是否不为空:1.使用NVL函数NVL函数可以用来将NU...
- Oracle 字典表使用函数自动转码,自定义函数传参
-
创建函数模板CREATEORREPLACEFUNCTIONdic_val--定义函数(dict_idINVARCHAR2,codeINVARCHAR2)--定义参数RETURN...
- 从上百个字段到1个CLOB:Oracle JSON存储实战指南
-
陆沉盯着左右两个屏幕上显示的数据格式文档,右手小拇指无意思地一下又一下的敲击着机械键盘的Ctrl键,在清脆的“哒哒”声中思考着。...
- 程序员面试中问到的Oracle常用数据类型
-
Oracle中常用数据类型有:1、字符类型1.1、定长字符1.1.1、Char字符长度不够自动在右边加空格符号。最大存2000个字符,当字符长度超出2000个报错。不指定大小默认为1。1.1.2、...
- 了解 Oracle 中单引号与双引号的用法,一篇文章教会你!
-
无论测试或者开发,对数据库的增删改查都是家常便饭。但有些小知识是经常被忽略,却又不能不去了解的,例如单引号和双引号的用法和区别,看完这一篇,你肯定会有收获。...
- Oracle字符串转日期错误,试试TO_TIMESTAMP函数
-
最近,在工作中,发现有些字符串格式无法转换成日期格式,如下图:这种to_date是无法转换的,会报错,因此,需要用到:TO_TIMESTAMP,具体格式如下:TO_TIMESTAMP(字段名,...
- oracle——空字符串('')不能用和!=
-
oracle——空字符串('')不能用<>和!=最近在查询空字符串的数据时发现查询不出数据。后来发现以前的写法在oracle中不能用。记录一下:数据如下:...
- oracle的listagg函数,可以把多行转为一个字符串
-
oracle的listagg函数可以把多行转为一个字符串,用起来很方便,示例如下:witht1as(select'001'asitemcode,'苹果'...
- MySQL 教程的天花板--入门到高级(mysql实用教程)
-
给大家推荐一套MySQL的教程,堪称MySQL教程的天花板。此教程包含...
- 一周热门
-
-
因果推断Matching方式实现代码 因果推断模型
-
C# 13 和 .NET 9 全知道 :13 使用 ASP.NET Core 构建网站 (1)
-
git pull命令使用实例 git pull--rebase
-
git 执行pull错误如何撤销 git pull fail
-
面试官:git pull是哪两个指令的组合?
-
git pull 和git fetch 命令分别有什么作用?二者有什么区别?
-
git fetch 和git pull 的异同 git中fetch和pull的区别
-
git pull 之后本地代码被覆盖 解决方案
-
还可以这样玩?Git基本原理及各种骚操作,涨知识了
-
git命令之pull git.pull
-
- 最近发表
-
- oracle中merge into语句详解(oracle的merge语句)
- N张图告诉你K-DB为什么能全面兼容Oracle?
- ORACLE 错误代码及解决办法(oracle错误码942)
- SQL知识大全三):SQL中的字符串处理和条件查询
- LabVIEW实现Oracle数据库的访问(深入浅出labview数据库应用)
- Oracle查询语句,你知道几个?(oracle常用查询语句)
- Oracle数据库中判断字段不为空?(oracle数据库中判断字段不为空的函数)
- Oracle 字典表使用函数自动转码,自定义函数传参
- 从上百个字段到1个CLOB:Oracle JSON存储实战指南
- 程序员面试中问到的Oracle常用数据类型
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)
- c语言 switch (34)
- git commit (34)