Python数据可视化:从Pandas基础到Seaborn高级应用
wptr33 2025-07-23 18:43 6 浏览
数据可视化是数据分析中不可或缺的一环,它能帮助我们直观理解数据模式和趋势。本文将全面介绍Python中最常用的三种可视化方法。
Pandas内置绘图功能
Pandas基于Matplotlib提供了简洁的绘图接口,适合快速数据探索。
基础绘图方法
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# 创建示例数据
np.random.seed(42)
df = pd.DataFrame({
'A': np.random.randn(100).cumsum(),
'B': np.random.rand(100) * 50,
'C': np.random.randint(0, 20, 100)
}, index=pd.date_range('2023-01-01', periods=100))
# 线图
df['A'].plot(title='线图示例', figsize=(10, 4))
plt.ylabel('数值')
plt.show()
多种图表类型
# 柱状图
df['C'].value_counts().sort_index().plot.bar(
title='频数统计柱状图',
color='skyblue',
alpha=0.7
)
plt.xticks(rotation=0)
plt.show()
# 面积图
df[['A', 'B']].plot.area(
title='面积图示例',
alpha=0.4,
figsize=(10, 5)
)
plt.show()
# 散点图
df.plot.scatter(
x='A',
y='B',
title='A与B的散点图',
c='C', # 使用C列作为颜色维度
cmap='viridis',
alpha=0.6
)
plt.show()
多子图绘制
# 创建多子图
axes = df.plot.line(
subplots=True,
layout=(2, 2),
figsize=(12, 8),
title=['A列', 'B列', 'C列', '']
)
# 调整布局
plt.tight_layout()
plt.show()
Matplotlib高级绘图
虽然Pandas绘图很方便,但Matplotlib提供了更精细的控制。
自定义图形样式
# 创建画布和坐标系
fig, ax = plt.subplots(figsize=(10, 6))
# 绘制多条线
ax.plot(df.index, df['A'],
label='趋势线',
color='blue',
linestyle='--',
linewidth=2)
ax.scatter(df.index, df['B'],
label='随机点',
color='red',
alpha=0.6)
# 添加图形元素
ax.set(title='自定义样式示例',
xlabel='日期',
ylabel='数值')
ax.legend()
ax.grid(True, linestyle=':', alpha=0.6)
# 调整坐标轴
ax.set_xlim(df.index.min(), df.index.max())
plt.xticks(rotation=45)
plt.show()
复杂图形组合
# 创建组合图
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 8), sharex=True)
# 上部:折线图
ax1.plot(df.index, df['A'], 'g-', label='趋势')
ax1.set_ylabel('趋势值', fontsize=12)
ax1.legend(loc='upper left')
ax1.set_title('组合图表示例', fontsize=14)
# 下部:柱状图
ax2.bar(df.index, df['C'],
width=1,
color='orange',
alpha=0.7,
label='频次')
ax2.set_ylabel('频次', fontsize=12)
ax2.legend(loc='upper left')
# 调整布局
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
高级可视化技巧
# 填充区域
fig, ax = plt.subplots(figsize=(10, 5))
ax.plot(df.index, df['A'], color='blue')
ax.fill_between(df.index,
df['A'].min(),
df['A'],
where=(df['A'] > df['A'].mean()),
color='blue',
alpha=0.2,
interpolate=True)
ax.axhline(df['A'].mean(), color='red', linestyle='--')
plt.title('填充区域示例')
plt.show()Seaborn统计可视化
Seaborn基于Matplotlib,提供了更高级的统计图形接口。
1. 分布可视化
Seaborn统计可视化
Seaborn基于Matplotlib,提供了更高级的统计图形接口。
分布可视化
import seaborn as sns
# 设置样式
sns.set_style("whitegrid")
sns.set_palette("husl")
# 分布图
plt.figure(figsize=(10, 6))
sns.histplot(data=df, x='A', kde=True, bins=20)
plt.title('分布直方图')
plt.show()
# 核密度估计
plt.figure(figsize=(10, 6))
sns.kdeplot(data=df, x='A', shade=True)
plt.title('核密度估计')
plt.show()
关系可视化
# 散点图矩阵
iris = sns.load_dataset('iris')
sns.pairplot(iris, hue='species', height=2.5)
plt.suptitle('鸢尾花数据集散点图矩阵', y=1.02)
plt.show()
# 热力图
corr = df.corr()
plt.figure(figsize=(8, 6))
sns.heatmap(corr,
annot=True,
cmap='coolwarm',
center=0,
fmt=".2f")
plt.title('相关系数热力图')
plt.show()
分类数据可视化
# 箱线图
tips = sns.load_dataset('tips')
plt.figure(figsize=(10, 6))
sns.boxplot(x='day', y='total_bill', hue='sex', data=tips)
plt.title('每日消费箱线图')
plt.show()
# 小提琴图
plt.figure(figsize=(10, 6))
sns.violinplot(x='day', y='total_bill',
hue='sex',
split=True,
data=tips)# 创建模拟电商数据
np.random.seed(42)
dates = pd.date_range('2023-01-01', '2023-12-31')
categories = ['Electronics', 'Clothing', 'Home', 'Books']
data = {
'Date': np.random.choice(dates, 500),
'Category': np.random.choice(categories, 500),
'Sales': np.random.randint(50, 500, 500),
'Profit': np.random.randn(500).cumsum() * 100 + 1000
}
ecom_df = pd.DataFrame(data)
# 1. 月度销售趋势分析
monthly_sales = ecom_df.groupby(
[ecom_df['Date'].dt.month_name(), 'Category']
)['Sales'].sum().unstack()
plt.figure(figsize=(12, 6))
monthly_sales.plot(kind='area', alpha=0.6, stacked=True)
plt.title('分品类月度销售趋势')
plt.ylabel('销售额')
plt.xticks(rotation=45)
plt.legend(title='品类')
plt.tight_layout()
plt.show()
# 2. 利润分布分析
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
sns.boxplot(x='Category', y='Profit', data=ecom_df)
plt.title('分品类利润分布')
plt.xticks(rotation=45)
plt.subplot(1, 2, 2)
sns.violinplot(x='Category', y='Profit', data=ecom_df)
plt.title('分品类利润密度')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
# 3. 销售-利润关系分析
plt.figure(figsize=(10, 6))
sns.scatterplot(x='Sales', y='Profit',
hue='Category',
size='Sales',
sizes=(20, 200),
alpha=0.7,
data=ecom_df)
plt.title('销售-利润关系气泡图')
plt.show()
plt.title('每日消费小提琴图')
plt.show()
实战案例:电商数据分析
# 创建模拟电商数据
np.random.seed(42)
dates = pd.date_range('2023-01-01', '2023-12-31')
categories = ['Electronics', 'Clothing', 'Home', 'Books']
data = {
'Date': np.random.choice(dates, 500),
'Category': np.random.choice(categories, 500),
'Sales': np.random.randint(50, 500, 500),
'Profit': np.random.randn(500).cumsum() * 100 + 1000
}
ecom_df = pd.DataFrame(data)
# 1. 月度销售趋势分析
monthly_sales = ecom_df.groupby(
[ecom_df['Date'].dt.month_name(), 'Category']
)['Sales'].sum().unstack()
plt.figure(figsize=(12, 6))
monthly_sales.plot(kind='area', alpha=0.6, stacked=True)
plt.title('分品类月度销售趋势')
plt.ylabel('销售额')
plt.xticks(rotation=45)
plt.legend(title='品类')
plt.tight_layout()
plt.show()
# 2. 利润分布分析
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
sns.boxplot(x='Category', y='Profit', data=ecom_df)
plt.title('分品类利润分布')
plt.xticks(rotation=45)
plt.subplot(1, 2, 2)
sns.violinplot(x='Category', y='Profit', data=ecom_df)
plt.title('分品类利润密度')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
# 3. 销售-利润关系分析
plt.figure(figsize=(10, 6))
sns.scatterplot(x='Sales', y='Profit',
hue='Category',
size='Sales',
sizes=(20, 200),
alpha=0.7,
data=ecom_df)
plt.title('销售-利润关系气泡图')
plt.show()
可视化最佳实践
图表选择指南
分析目的 | 推荐图表类型 |
趋势分析 | 折线图、面积图 |
分布分析 | 直方图、箱线图、小提琴图 |
关系分析 | 散点图、气泡图、热力图 |
构成分析 | 堆叠柱状图、饼图(少量类别) |
比较分析 | 柱状图、雷达图 |
样式优化技巧
# 设置全局样式
plt.style.use('seaborn') # 可选: ggplot, seaborn, fivethirtyeight等
# 创建专业图表
fig, ax = plt.subplots(figsize=(10, 6))
# 绘制内容
sns.lineplot(data=df, x=df.index, y='A', ax=ax, label='趋势')
# 优化样式
ax.set_title('专业图表示例', fontsize=14, pad=20)
ax.set_xlabel('日期', fontsize=12)
ax.set_ylabel('数值', fontsize=12)
ax.tick_params(axis='both', which='major', labelsize=10)
ax.legend(fontsize=10, framealpha=0.9)
# 添加注释
ax.annotate('峰值点',
xy=(df['A'].idxmax(), df['A'].max()),
xytext=(20, 20),
textcoords='offset points',
arrowprops=dict(arrowstyle='->'))
# 调整边距
plt.tight_layout()
plt.show()
性能优化
# 大数据集优化
large_df = pd.DataFrame(np.random.randn(100000, 3),
columns=['A', 'B', 'C'])
# 方法1: 采样
sample_df = large_df.sample(1000)
# 方法2: 使用hexbin替代散点图
plt.figure(figsize=(10, 6))
plt.hexbin(large_df['A'], large_df['B'], gridsize=50, cmap='Blues')
plt.colorbar(label='频数')
plt.title('大数据集hexbin图')
plt.show()
总结与进阶
工具对比
特性 | Pandas | Matplotlib | Seaborn |
易用性 | |||
灵活性 | |||
统计功能 | |||
默认美观度 |
进阶方向
# 1. 交互式可视化
# from plotly.express import scatter
# fig = scatter(df, x='A', y='B', color='C')
# 2. 地理空间可视化
# import geopandas as gpd
# world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
# 3. 3D可视化
# from mpl_toolkits.mplot3d import Axes3D
# fig = plt.figure()
# ax = fig.add_subplot(111, projection='3d')
掌握这些可视化技术后,我们可以有效探索和展示数据中的模式和见解。记住,好的可视化应该既美观又能清晰传达信息。
实践是提高可视化技能的最佳方式,建议大家从实际数据集开始,不断尝试不同的图表类型和样式。
相关推荐
- HIVE 窗口函数详解(hive常用开窗函数)
-
什么是窗口函数窗口函数是SQL中一类特别的函数。和聚合函数相似,窗口函数的输入也是多行记录。不同的是,聚合函数的作用于由GROUPBY子句聚合的组,而窗口函数则作用于一个窗口,这里,窗口...
- SQL高效使用20招:数据分析师必备技巧
-
基础优化技巧善用EXPLAIN分析执行计划EXPLAINSELECT*FROMordersWHEREorder_date>'2024-01-01';...
- 答记者问之 - Redis 的高效架构与应用模式解析
-
问:极客程序员你好,请帮我讲一讲redis答:redis主要涉及以下核心,我来一一揭幕Redis的高效架构与应用模式解析...
- MySQL通过累计求新增(mysql新增表字段语句)
-
前两天的那篇内容《MySQL递归实现单列分列成多行》...
- 一文讲懂SQL窗口函数 大厂必考知识点
-
大家好,我是宁一。今天是我们的第24课:窗口函数。...
- 圣诞快乐:用GaussDB T 绘制一颗圣诞树,兼论高斯数据库语法兼容
-
转眼就是圣诞的节日,祝大家节日快乐。用GaussDBT(也就是GaussDB100)绘制一棵圣诞树,纯国产,更喜庆。话不多说,上图:SQL如下:SELECTCASEWHENENMOTE...
- Minitab:功能强大的质量管理、统计分析及统计图形软件
-
一、Minitab简介Minitab软件是为质量改善、教育和研究应用领域提供统计软件和服务的先导,是全球领先的质量管理和六西格玛实施软件工具及持续质量改进的良好工具软件,她具有强大的功能和简易的可视化...
- 如何熟练使用SQL查询(如何熟练使用sql查询内容)
-
要熟练使用SQL查询(StructuredQueryLanguage),你需要系统地从语法入门,到实战练习,再到性能优化与多表查询的掌握。下面是一条循序渐进、实战驱动的学习路径:第一阶段:S...
- SAP SE38如何在多个系统间同步代码
-
上一篇文章写了如何在多个系统之间同步开发对象:多套SAPERP之间一键同步ABAP开发内容,有兄弟问有没有简单办法同步SE38程序代码的,因为使用请求的方式同步代码有点小题大做了。...
- 技术栈:刷了百道SQL题,还是不会用?你应该这样补短板
-
这是来自用户的提问,也是很多人遇到的困惑:...
- mysql窗口函数为了解决更加复杂的问题
-
为了解决复杂问题的窗口函数我们先讲一下窗口函数是什么窗口和普通的函数作用相同在不同列上进行查询和返回比如我们有如下的表...
- MariaDB开窗函数(开窗函数 mysql)
-
在使用GROUPBY子句时,总是需要将筛选的所有数据进行分组操作,它的分组作用域是整张表。分组以后,为每个组只返回一行。而使用基于窗口的操作,类似于分组,但却可以对这些"组"(即窗口...
- 一篇文章搞定MySQL中的窗口函数(mysql常用的窗口函数)
-
我是孙斌,北理数学系毕业,分享数据分析相关知识,点击右上角“关注”,学习更多数据分析知识。在MySQL中,分组groupby一般和聚合函数连用,如groupby+sum,这样能够得到每个组的总和,...
- 一周热门
-
-
因果推断Matching方式实现代码 因果推断模型
-
C# 13 和 .NET 9 全知道 :13 使用 ASP.NET Core 构建网站 (1)
-
git pull命令使用实例 git pull--rebase
-
git 执行pull错误如何撤销 git pull fail
-
面试官:git pull是哪两个指令的组合?
-
git pull 和git fetch 命令分别有什么作用?二者有什么区别?
-
git fetch 和git pull 的异同 git中fetch和pull的区别
-
git pull 之后本地代码被覆盖 解决方案
-
还可以这样玩?Git基本原理及各种骚操作,涨知识了
-
git命令之pull git.pull
-
- 最近发表
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)
- c语言 switch (34)
- git commit (34)