先Mark后用!8分钟读懂 Python 性能优化
wptr33 2025-07-23 18:45 3 浏览
从本文总结了Python开发时,遇到的性能优化问题的定位和解决。
概述:
性能优化的原则——优化需要优化的部分。
性能优化的一般步骤:
首先,让你的程序跑起来结果一切正常。然后,运行这个结果正常的代码,看看它是不是真的很慢。第三,如果很慢,找出占用大部分时间的代码。一个全面的测试用例可以保证未来的优化不会改变你程序的正确性。简单说,就是:
- 写代码
- 检查代码运行结果是否正确
- 分析慢不慢
- 优化
- 返回第二步继续
某些优化等同于好的编程风格,这些应该在你学编程语言的时候就学会,比如,把那些循环内不会改变的值的计算过程移动到循环外。
1、使用列表生成式——简洁快速生成新列表
老代码:
cube_numbers = []
for n in range(0,10):
if n % 2 == 1:
cube_numbers.append(n**3)
新代码:
cube_numbers = [n**3 for n in range(1,10) if n%2 == 1]
在代码量较少的时候,这两种方法可能差不多,但代码量多一些,可就不一样了。
2、尽量使用内置的方法
Python有很多内置的方法,你可以写高质量、高效的代码,但这也很难打败内置的库。这些代码已经被优化和严格测试过,查看内置方法列表,看看你是否重复造轮子了。
3、使用xrange()而不是range()
在Python2中,使用xrange()而非range()可以避免在循环中,在内存中存储所有数字,xrange()返回的是一个生成器,当循环这个对象时,在内存中仅仅保存当前对象。
想查看一个对象的内存占用,可以使用:
import sys
numbers = range(1,10000)
print(sys.getsizeof(numbers))
在Python3中使用range(),相当于Python2中的xrange()
4、考虑自己写生成器
前面几点提到了一般的优化模式,即,生成器能用就用。生成器允许我们一次返回一个对象,而不是所有对象。如前所述,xrange()正是一个Python2中实现的生成器,Python3中的range()也是生成器。
如果你工作中使用列表,考虑写自己的生成器,以使用这种延迟加载和高效的内存利用方法。生成器在读大量文件时尤其有用,处理大块文件而不必担心其大小,因为生成器的存在而成为可能。
import requests
import re
def get_pages(link):
pages_to_visit = []
pages_to_visit.append(link)
pattern = re.compile('https?')
while pages_to_visit:
current_page = pages_to_visit.pop(0)
page = requests.get(current_page)
for url in re.findall('<a href="([^"]+)">', str(page.content)):
if url[0] == '/':
url = current_page + url[1:]
if pattern.match(url):
pages_to_visit.append(url)
yield current_page
webpage = get_pages('http://www.example.com')
for result in webpage:
print(result)
该例子每次只返回一个页面并执行某种操作,在上述代码中,是打印链接。
如果没有生成器,则需要在开始处理之前,同时获取、处理或者收集所有链接。这样的代码更干净,更快,更容易测试。
5、检查元素存在尽可能用in
检查列表中的成员,使用in更快一些。
for name in member_list:
print('{} is a member'.format(name))
6、局部导入模块
最开始学Python时,我们可能习惯于在代码最前面导入所有我们想使用的模块,甚至用字母顺序排序。。。这种方式让你可以轻松地看到你的代码用了哪些模块,但是,坏处是你所有的导入都在最开始被加载了。(此处不太赞同原文中说的,还是要视情况而定,如果频繁调用的方法,在方法内部局部导入,岂不是重复加载)
原文对这种方法的好处的解释是:该做法有助于均匀的分配模块的加载时间,可以减少内存使用量的峰值。
还是那句话,视情况而定。
7、使用集合
过多的循环会给服务器带来不必要的压力。假设你想得到在两个列表中的相同的值,你可以使用多重循环,像这样:
a = [1,2,3,4,5]
b = [2,3,4,5,6]
overlaps = []
for x in a:
for y in b:
if x==y:
overlaps.append(x)
print(overlaps)
这个代码可以输出正确结果,但时间复杂度是O(n^2) ,可以使用如下代码替换:
print(set(a) & set(b))
集合是利用Hash算法实现的无序不重复元素集。涉及到如上的,对list求交、并、差、异或,可以转换为set进行操作,如下:
- s.union(t): s&t, 平均时间复杂度:O(len(s)+ len(t))
- s.intersection(t): s|t 最差时间复杂度同上
- s.difference(t) s-t 平均时间复杂度为O(len(s))
- s.symmetric_difference(t) 平均时间复杂度O(len(s)),最差时间复杂度为O(len(s)*len(t))
使用set代替使用list进行运算,速度和内存占用都得到很大的提升。
8、变量赋值
使用如下方式,优雅的赋值:
first_name, last_name, city = "Kevin", "Cunningham", "Brighton"
交换两个变量的值,你可以:
x, y = y, x
比下面的这种方式,既优雅,内存占用又少。
temp = x
x = y
y = temp
9、避免使用全局变量
尽量不使用全局变量是一种有效的设计模式,这是因为这样做可以保持对作用域的跟踪,防止不必要的内存使用。而且,Python检索局部变量比全局变量更快,所以请尽可能避免使用全局关键字。
10、使用join()连接字符串
在Python中,字符串是不可变类型,你可以使用+来连接字符串,但是+操作每次都要创建新字符串并且复制旧的内容过去。一个有效的方法是,使用数组array模块修改单个字符,然后使用join来重新创建结果字符串。
+方法:
new = "This" + "is" + "going" + "to" + "require" + "a" + "new" + "string" + "for" + "every" + "word"
print(new)
得到:
Thisisgoingtorequireanewstringforeveryword
而使用join:
new = " ".join(["This", "will", "only", "create", "one", "string", "and", "we", "can", "add", "spaces."])
print(new)
得到:
This will only create one string and we can add spaces.
可以看出,使用join()拼接字符串更优雅,更快速
11、保持Python的版本更新
Python的维护者对于使Python更快,鲁棒性更强有很大的热情。一般来说,每一个新版本都会提升Python的性能和安全性。但是,要保证你所用的库在新版Python上也能用。
12、无限循环中,用 while 1
如果你在听socket,那么你可能想使用无限循环。平时大家会用while True, 这有用,但是你可以使用更轻便的 while 1来达到完全相同的效果。
13、换种方式
一旦你在你的应用中使用一种编程方式,你可能会复用、再复用这一种方法。但是,多实验集中不同的方法可以让你看到哪种实现更好。这不仅会让你学习和思考你写的代码的方式,而且还会让你更有创新精神,想想你如何能更有创造性的用新方法来实现更快更稳定的结果。
简言之:花式写代码,多骚,多测,最后稳如老狗。
14、尽可能早的离开
当你知道某个方法执行到无法再做有意义的工作时,尝试离开,这样可以减少缩进,增加可读性,还避免了嵌套:
老代码:
if positive_case:
if particular_example:
do_something
else:
raise exception
新代码:
if not positive_case:
raise exception
if not particular_example:
raise exception
do_something
当我们用很多组输入去测试时,会发现新代码中抛出异常更早,而且你不需要一直梳理这些条件中的逻辑链。
15、了解itertools
itertools 是个大宝贝。如果你没听过,那么Python的一大部分标准库你就错过了。你可以使用itertools中的方法快速、优雅、内存高效的创建方法。
好好看看文档,寻找教程以充分利用该库。(说的我想单独开一篇文章介绍一下了。。。)
其中一个例子是排列函数,假设你想生成列表['a', 'c', 'b']的全排列,你可以:
import itertools
iter = itertools.permutations(["a", "c", 'b'])
list(iter)
试试吧!贼有用,贼快。
16、使用装饰器缓存
记忆化是一种特定的缓存类型,可以优化软件的运行速度,一般来说,缓存保存着最近操作的结果,该结果可以被呈现为网页或者复杂计算的结果。(没太懂,原文如下)
Memoization is a specific type of caching that optimizes software running speeds. Basically, a cache stores the results of an operation for later use. The results could be rendered web pages or the results of complex calculations.
你可以自己尝试计算第100个Fibonacci数。
旧代码:
def fibonacci(n):
if n == 0: # There is no 0'th number
return 0
elif n == 1: # We define the first number as 1
return 1
return fibonacci(n - 1) + fibonacci(n-2)
用上述办法计算fibonacci数时,你的电脑会发出轰鸣声,尤其是n较大的时候。。。
如果你使用标准库中的装饰器缓存,就不一样了:
import functools
@functools.lru_cache(maxsize=128)
def fibonacci(n):
if n == 0:
return 0
elif n == 1:
return 1
return fibonacci(n - 1) + fibonacci(n-2)
在Python中,装饰器使用别的方法并且延展其功能。我们使用@symbol这样的符号来标识使用装饰器的方法。在上述代码中,使用了functools.Iru_cache装饰器,将运行结果存入内存。
还有其他形式的装饰器,你也可以写自己的装饰器,但这个装饰器快而且是内置的。有多快?自己试试吧。
17、排序时使用keys
文中描述的方法:
import operator
my_list = [("Josh", "Grobin", "Singer"), ("Marco", "Polo", "General"), ("Ada", "Lovelace", "Scientist")]
my_list.sort(key=operator.itemgetter(0))
事实上我觉得sorted也是很好用的:
sorted_my_list = sorted(my_list, key=lambda x: x[0])
只能说,都可以吧。
18、不要为条件构造一个集合
你有时候是不是想把你的代码构建成这样:
if animal in set(animals):
上面这个主意看起来很合理。把animals里面的重复数据删掉,感觉上会更快
if animal in animals:
但是,即使列表中可能有很多项重复,解释器的优化程度仍然很高,以至于先set再检查in可能会减慢速度。一般来说,不使用set而是用下面的那种,总是更快的。
19、使用链表
Python 列表数据类型实现为数组。这意味着,在列表开头添加一个元素可能是非常费力的操作,因为每个元素都得移动。链表数据类型这下就派上用场了。不同于数组,链表中每一项都有和表中下一项的连接——由此得名。
列表需要实现分配好内存,这种分配代价高昂,浪费巨大,如果你提前不知道你要多大的数组,那更是如此。
链表允许你在你需要的时候才分配内存,每一项都被存在内存的不同部分,链接将这些项连接起来。
链表的问题是查找时间比较慢,需要做个彻底分析,来确定是不是更好的办法。
20、使用基于云的Python性能工具
当你在本地工作时,你可以用一些性能工具来定位你的项目的性能瓶颈。如果你的项目将会被部署到网上,就有点不同了。stackify(文章所在的网站,一波软广告)将让你看到你的网站在生产环境下的表现,也会提供代码分析,错误追踪,服务器指标等。
结论:
这些 tips 只是指出你的代码可能遇到的陷阱,和一些建议的解决方式,具体怎么优化,还是要你自己去考虑。不管怎么样,性能优化之路,就从此开始吧。
参考这些包,将代码转换为C或者机器码:
http://cython.org/
http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/
http://psyco.sourceforge.net/
http://www.scipy.org/Weave
http://code.google.com/p/shedskin/
http://pyinline.sourceforge.net/
相关推荐
- Python钩子函数实现事件驱动系统(flask钩子)
-
钩子函数(HookFunction)是现代软件开发中一个重要的设计模式,它允许开发者在特定事件发生时自动执行预定义的代码。在Python生态系统中,钩子函数广泛应用于框架开发、插件系统、事件处理和中...
- Python 项目中使用锁的棘手问题及深度解决方法
-
在Python多线程开发中,锁的使用看似简单,实则暗藏诸多棘手问题。这些问题往往在高并发场景下才会暴露,且排查难度大、影响范围广。本文将针对实际项目中锁使用的棘手场景,从问题根源出发,提供系统性的...
- 学Python基础这么久了,花了好长时间精心记录的学习笔记
-
我为什么要学Python呢!当我刚开始接触Python时,我就感觉Python是一种很高级的语言。我很喜欢,对,就是因为喜欢。好了!话不多说,开始看笔记了,喜欢的朋友可以点赞关注转发哦~...
- Python浅拷贝深拷贝之copy、deepcopy
-
笔记记录20221205:个人总结:1,两者基本区别不大;2,在涉及到子对象时候,两者才有区别;3,在涉及到子对象,且子对象的操作后内存地址没有发生变化(如下方代码:dic1['one'...
- 自学python第四天:列表(python入门之玩转列表)
-
列表在Python中,用方括号([])表示列表,用逗号分隔其中的元素。例:cars=['搅拌车','运钞车','大货车']print(car...
- 先Mark后用!8分钟读懂 Python 性能优化
-
从本文总结了Python开发时,遇到的性能优化问题的定位和解决。概述:性能优化的原则——优化需要优化的部分。性能优化的一般步骤:首先,让你的程序跑起来结果一切正常。然后,运行这个结果正常的代码,看看它...
- Python基础编程——字典的常用方法(三)
-
前一节介绍了get()、items()、keys()、pop()四种字典的常用方法,本节继续介绍剩余的四种字典常用的方法:popitem()、setdefault()、update()、values(...
- Python 获取图片内容的方法(python获取图片并储存图片)
-
在网络爬虫和数据处理中,获取图片内容是常见需求。Python通过相关库可以便捷地从网络或本地获取图片内容,以下是具体实现方法及注意事项。一、从网络获取图片内容1.1使用requests库获取r...
- 一天快速入门 Python(python入门很简单)
-
Python是由GuidoVanRossum在90年代早期设计,现在是最常用的编程语言之一。特别是人工智能的火热,再加之它的语法简洁且优美,实乃初学者入门AI必备的编程语言。作者|yuq...
- Python集合17个方法详解(python集合的概念)
-
01、add()描述:add()方法用于给集合添加元素,如果添加的元素在集合中已存在,则不执行任何操作。注意:集合中只能包含可哈希的对象,即list,dict都不能嵌入到集合语法:set.add...
- Python字典:定义、基本操作与方法详解
-
什么是字典在Python中,字典(dict)是一种无序的、可变的数据类型,用于存储键-值(key-value)对。字典中的键必须是唯一的,且不可变的数据类型(如字符串、数字、元组),而值可以是任何数据...
- Python小案例47-集合的操作和方法
-
Python中的集合是一种无序且不重复的数据结构。它们是可变的,可以添加、删除和修改元素。下面是一些常用的集合操作和方法:...
- Python 项目中使用锁的常见问题及解决方法
-
在Python多线程编程中,锁是保证共享资源安全访问的核心机制。然而,锁的不当使用往往会引发新的问题,如死锁、性能损耗等。本文结合实际项目场景,深入剖析锁在使用过程中的常见问题,并提供可落地的解决...
- python中元组,列表,字典,集合删除项目方式的归纳
-
九三,君子终日乾乾,夕惕若,厉无咎。在使用python过程中会经常遇到这...
- python学习教程-第五节内容(python系列教程)
-
字符串大小写转换方法查找和替换方法判断字符串内容类型字符串开头结尾判断字符串分割和连接...
- 一周热门
-
-
C# 13 和 .NET 9 全知道 :13 使用 ASP.NET Core 构建网站 (1)
-
因果推断Matching方式实现代码 因果推断模型
-
git pull命令使用实例 git pull--rebase
-
git 执行pull错误如何撤销 git pull fail
-
面试官:git pull是哪两个指令的组合?
-
git pull 和git fetch 命令分别有什么作用?二者有什么区别?
-
git fetch 和git pull 的异同 git中fetch和pull的区别
-
git pull 之后本地代码被覆盖 解决方案
-
还可以这样玩?Git基本原理及各种骚操作,涨知识了
-
git命令之pull git.pull
-
- 最近发表
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)
- c语言 switch (34)
- git commit (34)