百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT技术 > 正文

推荐收藏!10个相见恨晚的Pandas函数,太好用了

wptr33 2024-11-23 23:31 18 浏览

Pandas是Python最主要的数据分析库之一,它提供了大量数据结构和函数,能快速对数据进行处理和分析。

Pandas函数有很多,但在处理和分析数据的过程中,有的函数使用频率会更高一些。本篇就分享10个使用频率非常高的Pandas函数。

assign

assign直接向DataFrame对象添加新的一列,可以创建常数列、指定序列数据以及由已知列通过一定计算产生。

import numpy as np
import pandas as pd
data = {'A':[12,13,14,15],'B':[22,23,24,25]}
df = pd.DataFrame(data)
df
df.assign(C=[1,2,3,4]) #指定序列数据
df.assign(C=df.A+df.B) #根据已知列数据计算

eval

eval执行类似SQL语法中的计算,对已知列执行一定的计算时可用eval完成适用于数据量大的时候,效率会非常高。

import numpy as np
import pandas as pd
data = {'A':[12,13,14,15],'B':[22,23,24,25]}
df = pd.DataFrame(data)
df
df.eval('C=A+B') #根据已知列数据计算
add = pd.Series([1,2,3,4])
df.eval('C=A+@add') #通过@符号使用Python的局部变量,@符号表示其后紧随的是一个变量名称而不是列名称

query

query类似于SQL中where关键字的语法逻辑,按照DataFrame中某列的规则进行过滤操作,可以说是一个使用最频繁的数据筛选函数了。

import numpy as np
import pandas as pd
data = {'A':[12,13,14,15],'B':[22,23,24,25]}
df = pd.DataFrame(data)
df
df.query('A==15') #查询A列数值为5的行
df.query('A<15') #查询A列数值小于5的行

apply

apply函数本身不处理数据,而是作为处理数据的调度器。当我们使用for循环遍历DataFrame或Series,数据量大的话会非常慢。而用apply函数会非常快,它自动根据function遍历每一个数据,然后返回一个数据结构为Series的结果。

import pandas as pd
df = pd.DataFrame({'A':['bob','sos','bob','sos','bob','sos','bob','bob'],
'B':['one','one','two','three','two','two','one','three'],
'C':[3,1,4,1,5,9,2,6],
'D':[1,2,3,4,5,6,7,8]})
grouped = df.groupby('A')
for name,group in grouped: #用for遍历
print(name)
print(group)
d = grouped.apply(lambda x:x.describe()) #用apply函数
print(d)

insert

insert函数可以在指定位置插入一列数据。

import numpy as np
import pandas as pd
data = {'A':[12,13,14,15],'B':[22,23,24,25]}
df = pd.DataFrame(data)
df
add = pd.Series([1, 2, 3, 4])
df.insert(1, 'X', add) #插入列
print(df)

sample

当我们只需要DataFrame中的一部分时,就可以用sample函数从DataFrame中随机选取若干个行或列。

import numpy as np
import pandas as pd
data = {'A':[12,13,14,15],'B':[22,23,24,25]}
df = pd.DataFrame(data)
df
df.sample(2) #随机抽取2行
df.sample(frac=0.8) #随机抽取数据的80%

explode

当DataFrame中某一行其中一个元素包含多个同类型数据时,就可以用explode函数将一行数据展开成多行,只要一行代码,非常方便。

import numpy as np
import pandas as pd
data = {'A':[12,13,14,15],'B':[[21,22],23,24,[25,26,27]]}
df = pd.DataFrame(data)
df
df.explode('B') #将B列中有多个元素的数据拆分成多行

nunique

nunique函数用于计算行或列上唯一值的数量,即去重后计数。这个函数在实际的数据分析中,非常实用。

import numpy as np
import pandas as pd
data = {'name':['A','B','C','D','A','B'],'age':[21,22,23,23,21,22]}
df = pd.DataFrame(data)
df
df.name.nunique() #对name列进行唯一值计数 结果为:4

replace

replace函数是用来替换DataFrame中的值,赋以新的值。

import numpy as np
import pandas as pd
data = {'name':['A','B','C','D','A','B'],'age':[21,22,23,23,21,22]}
df = pd.DataFrame(data)
df
df.replace(['A','B'],['E','F'],inplace=True) #如果没有inplace=True的话,原数据不会改变
df

melt

melt函数是pivot函数的逆转操作函数,用于将宽表变成窄表,即将列名转换为列数据,重构DataFrame。这个操作我们在做数据分析时经常需要用到。

import numpy as np
import pandas as pd
data = {'city':['A','B','C','D'],
'2018data':[22,33,44,55],
'2019data':[12,34,67,89],
'2020data':[80,90,100,110],
'2021data':[120,132,144,178]}
df = pd.DataFrame(data)
df
pd.melt(df,id_vars=['city'],value_vars=['2018data','2019data','2020data','2021data'])

以上所说的10个Pandas函数,你最需要哪一个呢?或者还有其他想要实现的功能,可以评论区说给我听哦,下一次说不定就有相关的干货啦!

码代码不易,帮忙留下一个小反馈吧~~

相关推荐

redis的八种使用场景

前言:redis是我们工作开发中,经常要打交道的,下面对redis的使用场景做总结介绍也是对redis举报的功能做梳理。缓存Redis最常见的用途是作为缓存,用于加速应用程序的响应速度。...

基于Redis的3种分布式ID生成策略

在分布式系统设计中,全局唯一ID是一个基础而关键的组件。随着业务规模扩大和系统架构向微服务演进,传统的单机自增ID已无法满足需求。高并发、高可用的分布式ID生成方案成为构建可靠分布式系统的必要条件。R...

基于OpenWrt系统路由器的模式切换与网页设计

摘要:目前商用WiFi路由器已应用到多个领域,商家通过给用户提供一个稳定免费WiFi热点达到吸引客户、提升服务的目标。传统路由器自带的Luci界面提供了工厂模式的Web界面,用户可通过该界面配置路...

这篇文章教你看明白 nginx-ingress 控制器

主机nginx一般nginx做主机反向代理(网关)有以下配置...

如何用redis实现注册中心

一句话总结使用Redis实现注册中心:服务注册...

爱可可老师24小时热门分享(2020.5.10)

No1.看自己以前写的代码是种什么体验?No2.DooM-chip!国外网友SylvainLefebvre自制的无CPU、无操作码、无指令计数器...No3.我认为CS学位可以更好,如...

Apportable:拯救程序员,IOS一秒变安卓

摘要:还在为了跨平台使用cocos2d-x吗,拯救objc程序员的奇葩来了,ApportableSDK:FreeAndroidsupportforcocos2d-iPhone。App...

JAVA实现超买超卖方案汇总,那个最适合你,一篇文章彻底讲透

以下是几种Java实现超买超卖问题的核心解决方案及代码示例,针对高并发场景下的库存扣减问题:方案一:Redis原子操作+Lua脚本(推荐)//使用Redis+Lua保证原子性publicbo...

3月26日更新 快速施法自动施法可独立设置

2016年3月26日DOTA2有一个79.6MB的更新主要是针对自动施法和快速施法的调整本来内容不多不少朋友都有自动施法和快速施法的困扰英文更新日志一些视觉BUG修复就不翻译了主要翻译自动施...

Redis 是如何提供服务的

在刚刚接触Redis的时候,最想要知道的是一个’setnameJhon’命令到达Redis服务器的时候,它是如何返回’OK’的?里面命令处理的流程如何,具体细节怎么样?你一定有问过自己...

lua _G、_VERSION使用

到这里我们已经把lua基础库中的函数介绍完了,除了函数外基础库中还有两个常量,一个是_G,另一个是_VERSION。_G是基础库本身,指向自己,这个变量很有意思,可以无限引用自己,最后得到的还是自己,...

China&#39;s top diplomat to chair third China-Pacific Island countries foreign ministers&#39; meeting

BEIJING,May21(Xinhua)--ChineseForeignMinisterWangYi,alsoamemberofthePoliticalBureau...

移动工作交流工具Lua推出Insights数据分析产品

Lua是一个适用于各种职业人士的移动交流平台,它在今天推出了一项叫做Insights的全新功能。Insights是一个数据平台,客户可以在上面实时看到员工之间的交流情况,并分析这些情况对公司发展的影响...

Redis 7新武器:用Redis Stack实现向量搜索的极限压测

当传统关系型数据库还在为向量相似度搜索的性能挣扎时,Redis7的RedisStack...

Nginx/OpenResty详解,Nginx Lua编程,重定向与内部子请求

重定向与内部子请求Nginx的rewrite指令不仅可以在Nginx内部的server、location之间进行跳转,还可以进行外部链接的重定向。通过ngx_lua模块的Lua函数除了能实现Nginx...