百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT技术 > 正文

编程硬核技术:高性能低延迟内存池实现技术

wptr33 2025-01-23 21:51 15 浏览

调用malloc分配内存大概是微秒级别,高并发低延迟系统的关键路径上,要慎用malloc/new,特别是在线程数量很大的情况下。


给一个测试数据:linux 64位系统,标准库malloc,单线程,gcc开O3优化,分配的size在4M以下随机,平均每次分配大概0.1-3微秒,具体数值跟分配行为有关,跟分配后是否free有关。


多线程下的malloc性能开销,我没有测,应该会比单线程下差很多很多。


微秒级的执行时间是什么概念?一般而言,简单的函数调用,里面做个加减乘除+拷贝几十个字节+逻辑判断,应该是几十个纳秒级别,由此可见,malloc/new调用是比较慢的。


我们来看看doris是怎么做内存管理的,推测这个方案是从某个开源库借鉴(chao)过来的,any way,性能不错,值得研究。


Doris内存管理分三层

系统配置器(system_allocator)

  • 封装系统/标准接口,提供allocate/free接口
  • allocate(size)根据size调用posix_memalign()或者mmap()
  • free()接口调用munmap()或者free()
  • 会在分配的时候做内存对齐。

块配置器(chunk_allocator)

  • 块(Chunk):通过system_allocator::allocate接口分配的内存块,包含内存块首地址指针、尺寸、core_id等信息
  • 为每个CPU core维护一个chunk_arena
  • 每个chunk_arena包含一个chunk_list
  • chunk_list为每个size维护一个该size的chunk集合
  • 为了减少各种size的数量,只维护固定size的chunk集合,比如8、16、32、64、128、256...,所以如果分配请求的大小是34字节,那么会向上圆整到64
  • 块配置器会使用系统配置器分配/回收内存
  • 块配置器是单件(唯一实例)

内存池(MemPool)

  • 对外提供allocate()、clear()、free_all()等接口
  • 维护通过allocate接口分配的ChunkInfo的列表,ChunkInfo在Chunk上增加了一个已分配字节数
  • 内存池会通过块分配器分配大块,每次分配的大块的大小会按X2(策略决定)增加,从而确保不会频繁调用块分配器的allocate接口
  • 通过内存池的allocate接口分配的内存,不支持单个块free,只支持统一释放:free_all()
  • clear()接口支持内存复用


三者之间的关系如下

system_allocator的作用

屏蔽了动态内存管理相关的底层系统调用和标准C/Posix编程接口

  • 如果单次申请的chunk size大于某个阈值,那就调用mmap/munmap
  • 否则调用posix_memalign
  • 上层应用不再直接调用底层API,而是调用system_allocator封装的编程接口:allocate/free


chunk_allocator是怎么工作的?

chunk_allocator是system_allocator的上层,会使用system_allocator的allocate/free接口申请和回收内存块。


chunk_allocator是MemPool的下层,提供allocate和free接口供MemPool使用。


chunk_allocator主要是减少了多线程竞争,chunk_allocator维护core_num个ChunkArena对象,该对象内维护一个chunk_list,为size=2^n的每个块维护一个free list,内存申请的时候,会对请求的size向上圆整。



因为每个core都有一个ChunkArena对象,所以上层应用代码申请内存的时候,先获取代码正在哪个核上执行,从而找到对应的ChunkArena对象,再通过size找到对应的free列表,再从该free list上摘除一个块。


多个逻辑线程依然可能调度到同一个核上执行,虽然多个线程不会在一个核上同时执行申请动态内存,但多个线程在一个核上交错执行(申请内存)的情况,依然会引发对free list的数据竞争(虽然这种情况出现的概率很小),这时候只需要用test_and_swap原子操作不停尝试就行了,如果尝试一定次数还不成功,则执行线程主动yield,让出CPU,从而让另一个在该核上执行内存分配的线程有机会继续执行,进而修改atomic_flag,然后之前yield CPU的线程被重新调度执行。


TAS(test and swap)是很快的,且冲突概率变得非常小(因为每个核都有一个atomic_flag,不会所有线程竞争一个锁),这样的免锁设计,让分配内存变得很高效。


chunk_allocator也做了一层cache,通过chunk_allocator::free释放的内存块,并不一定会真正调用底层的free,只在预留size超过限额的情况下,才会调用system_allocator的free(),这样进一步减少了对系统底层动态内存管理相关API的调用。


chunk_allocator是单件,唯一实例。


MemPool设计

咱们进一部分分析MemPool的设计,先给一张MemPool的图:


MemPool的作用

内存池在system_allocator/chunk_allocator/MemPool的层次结构中,位于顶层,它依赖于下层chunk_allocator,间接依赖system_allocator,下层的类不反向依赖于MemPool。


先说Chunk和ChunkInfo。


Chunk就是底层接口单次分配的内存块,Chunk持有内存块首地址data,内存块大小size,以及分配的时候执行线程在哪个core上执行。


ChunkInfo包含Chunk,同时多了一个int allocated_size,这是因为,为了减少对
system_allocator::allocate()的调用次数,所以单次分配的chunk会比较大,几K,几十K,甚至XX M(兆),这个大的size记录在chunk->size上。但是,上层应用一次分配的内存可能比较小,几十字节之类,所以,该chunk还有多少字节可用(已经使用了多少字节),需要有一个记录,这就是allocated_size,相当于一个游标,每次从该chunk分配x字节,那就把allocated_size这个游标往增长的方向移动x字节(实际上会考虑到对齐)。


所以,对
system_allocator::allocate()的调用,相当于批发进货。对MemPool::allocate()的调用,相当于零售。
效果上,就是减少了底层API的调用频率,减少了多线程竞争


MemPool持有一个next_chunk_size,它表示下次调用ChunkAllocator分配接口allocator的时候,需要分配多大,它被初始化为4K,下次分配的时候,会增加到8K,当然如果下次申请的size大于8K,则会取max。


next_chunk_size会一直增加,直到触达最大配置值,这样的设计,目的还是为了减少底层分配次数。


每次ChunkAllocator::allocate()都会返回一个Chunk,进而包装为ChunkInfo,被MemPool管理起来,所以MemPool会有多个ChunkInfo,用chunk_index标识chunk。


MemPool记录一个current_chunk_idx,这个idx记录了上次成功分配的ChunkInfo,下次分配的时候,先从current_chunk_idx指向的chunkInfo里尝试分配,如果该ChunkInfo的剩余内存空间不够,则会查找其他ChunkInfo,直到找到能满足分配请求的ChunkInfo,如果现有的所有ChunkInfo都不满足,那就走ChunkAllocator的allocate,并把新申请的Chunk,放入ChunkInfo list。


MemPool不支持单次分配的内存free,但是支持free_all,这会free该MemPool的所有Chunk。


MemPool::Clear()接口不会真正free Chunk,而是会重置allocated_size,复用原内存chunk。


一个细节,关于ChunkAllocator,分配的时候,会首先从线程运行的core上的ChunkArena分配,如果没有合适的,会从其他Core的ChunkArena里分配,再分配不到,才会从system_allocate,这样做的目的,是减少内存cache量。


我们做内存池有几个目标

  1. 吞吐,吞吐越大越好,能满足各种不同size,各种内存分配场景的大吞吐最好。
  2. 提高存储空间利用率,千方百计减少碎片(内碎片+外碎片,不懂请补课)。
  3. 为了提高速度,我们经常要做cache,但是cache多了,会造成宝贵的内存资源的浪费,所以,需要balance。
  4. 最后,非常重要的一点,提高cache利用率。


大家可以结合以上几点,慢慢体会该内存池的方式,是如何做到的。


很多人会质疑内存池的必要性,我只能说,如果线程很多,并发很大,时延要求也高,那可能真的需要加这么一层,不信你可以去测试一下。


不过,所有的方案都有缺点都有优点,都需要通用性,专用性,性能,效率,内存利用率等各个方面做出权衡,要结合业务,结合上层代码来定制。


nginx,clickhouse的内存管理方案也不错,读者有兴趣可以去找来看看。

相关推荐

Spring和SpringBoot到底有什么区别

一提到Spring和SpringBoot的区别,大部分人第一反应就是SpringBoot是Spring的框架,那具体的区别在哪里呢?为什么现在开发都用SpringBoot呢?...

Spring Boot3.0升级,踩坑之旅,附解决方案

本文基于newbeemall项目升级SpringBoot3.0踩坑总结而来,附带更新说明:...

Java常用框架,你用过几款?(java使用的框架)

作为头牌编程语言,Java的火爆程度已经毋庸置疑,Java框架在Java开发中有着不可忽视的重要地位。今天就给大家具体介绍一下Java常用框架,希望对正在学习Java的小伙伴有所帮助。框架、设计模式框...

2021年超详细的java学习路线总结—纯干货分享

本文整理了java开发的学习路线和相关的学习资源,非常适合零基础入门java的同学,希望大家在学习的时候,能够节省时间。纯干货,良心推荐!第一阶段:Java基础...

Nginx+SpringBoot实现负载均衡(nginx负载均衡的实现)

作者:虚无境出处:http://www.cnblogs.com/xuwujing前言在上一篇中介绍了Nginx的安装,本篇文章主要介绍的是Nginx如何实现负载均衡。负载均衡介绍介绍在介绍Nginx的...

Spring Boot 运行原理(5分钟速解)

SpringBoot...

SpringBoot+LayUI后台管理系统开发脚手架

源码获取方式:关注,转发之后私信回复【源码】即可免费获取到!项目简介本项目本着避免重复造轮子的原则,建立一套快速开发JavaWEB项目(springboot-mini),能满足大部分后台管理系统基础开...

java轻松玩转Excel之EasyExcel(java做excel)

项目地址:https://github.com/PiKeZhao/excel-model.git如果您对该项目有什么问题加群咨询哦978219630(各类电子书籍,学习视频等)大家常用Apache...

开源一套简单通用的后台管理系统(开源系统靠什么赚钱)

  前言  前段时间我们写一个简单的后台模板SpringBoot系列——Security+Layui实现一套权限管理后台模板<...

VUE简介(vue简介和特点)

一.前后端分离既然我们在开发中使用前后端分离模式,也就是前端拿到后端的数据时怎么处理,怎么输出都有前端自己来实现,这样就需要写大量的js代码,而为了简化js的代码,就衍生出了很多的框架,比如jquer...

聊聊如何对eureka管理界面进行定制化改造

前言在nacos还未面世之前,eureka基本上就是springcloud全家桶体系注册中心的首选,随着nacos的横空出世,越来越多基于springcloud的微服务项目采用nacos作为注册中心,...

newbee-mall开源免费java商城系统

简介newbee-mall项目(新蜂商城)是一套电商系统,包括newbee-mall商城系统及newbee-mall-admin商城后台管理系统,基于SpringBoot2.X及相关...

入职阿里巴巴,成为年薪百万阿里P7高级架构师需要必备哪些技术栈

大家都知道,阿里P7高级技术专家,基本上是一线技术人能达到的最高职级,也是很多程序员追求的目标。达到年入百万的P7Java高级架构师级别,不仅要具备优秀的编程能力和系统设计能力,在技术视野和业务洞...

学完SSM框架就可以成为Java程序员了?要找到工作还需要这些技术

Java语言是学习人数最多的语言,没错,应用领域的优势和就业薪资的吸引是不少人关注Java语言的理由。但其实Java也是一门“宽进严出”的编程语言,想成为Java高手并不容易。那么学到什么程度才能出师...

SpringCloud系列——SSO 单点登录

  前言  作为分布式项目,单点登录是必不可少的,文本基于之前的的博客(猛戳:SpringCloud系列——Zuul动态路由,SpringBoot系列——Redis)记录Zuul配合Redis实现一...