7 招教你轻松搭建以图搜图系统 以图搜图搜索引擎
wptr33 2024-11-13 15:04 20 浏览
作者 | 小龙
责编 | 胡巍巍
当您听到“以图搜图”时,是否首先想到了百度、Google 等搜索引擎的以图搜图功能呢?事实上,您完全可以搭建一个属于自己的以图搜图系统:自己建立图片库;自己选择一张图片到库中进行搜索,并得到与其相似的若干图片。
Milvus 作为一款针对海量特征向量的相似性检索引擎,旨在助力分析日益庞大的非结构化数据,挖掘其背后蕴含的巨大价值。为了让 Milvus 能够应用于相似图片检索的场景,我们基于 Milvus 和图片特征提取模型 VGG 设计了一个以图搜图系统。
正文分为数据准备、系统概览、 VGG 模型、API 介绍、镜像构建、系统部署、界面展示七个部分。数据准备章节介绍以图搜图系统的数据支持情况。系统概览章节展示系统的整体架构。VGG 模型章节介绍了 VGG 的结构、特点、块结构以及权重参数。API 介绍章节介绍系统的五个基础功能 API 的工作原理。镜像构建章节介绍如何通过源代码构建客户端和服务器端的 Docker 镜像。系统部署章节展示如何三步搭建系统。界面展示章节会展示系统的搜索界面。
数据准备
本文以 PASCAL VOC 图片集为例搭建了一个以图搜图的端到端解决方案,该图片集包含 17,125 张图片,涵盖 20 个目录:人类;动物(鸟、猫、牛、狗、马、羊);交通工具(飞机、自行车、船、公共汽车、小轿车、摩托车、火车);室内(瓶子、椅子、餐桌、盆栽植物、沙发、电视)。
数据集大小:约2GB
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
说明:您也可以使用其他的图片数据进行加载。目前支持的图片格式有JPG格式、PNG格式。
系统概览
为了让用户在 Web 网页上进行交互操作,我们采取了 C/S 的架构。webclient 负责接收用户的请求并将请求发送给 webserver, webserver 接到 webclient 发来的 HTTP 请求之后进行运算并将运算结果返回给 webclient 。
webserver 主要由两部分组成,图片特征提取模型 VGG 和向量搜索引擎 Milvus。VGG 模型负责将图片转换成向量,Milvus 负责存储向量并进行相似向量检索。webserver 的架构如下图所示:
VGG 模型
VGGNet 由牛津大学的视觉几何组( Visual Geometry Group )和 Google DeepMind 公司的研究员共同提出,是 ILSVRC-2014 中定位任务第一名和分类任务第二名。其突出贡献在于证明使用很小的卷积( 3*3 ),增加网络深度可以有效提升模型的效果,而且 VGGNet 对其他数据集具有很好的泛化能力。VGG 模型在多个迁移学习任务中的表现要优于 GoogleNet ,从图像中提取 CNN 特征, VGG 模型是首选算法。因此,在本方案中选择 VGG 作为深度学习模型。
VGGNet 探索了 CNN 的深度及其性能之间的关系,通过反复堆叠 3*3 的小型卷积核和 2*2 的最大池化层, VGGNet 成功地构筑了 16-19 层深的 CNN 。在本方案中使用了 Keras 的应用模块( keras.applications )提供的 VGG16 模型。
(1) VGG16 结构
VGG16 共包含 13个 卷积层( Convolutional Layer ), 3 个全连接层( Fully connected Layer ), 5 个池化层( Pool layer )。其中,卷积层和全连接层具有权重系数,因此也被称为权重层,总数目为 13+3=16 ,这即是 VGG16 中 16 的来源。(池化层不涉及权重,因此不属于权重层,不被计数)。
(2) VGG16 特点
卷积层均采用相同的卷积核参数
池化层均采用相同的池化核参数
模型是由若干卷积层和池化层堆叠( stack )的方式构成,比较容易形成较深的网络结构
(3) VGG16 块结构
VGG16 的卷积层和池化层可以划分为不同的块( Block ),从前到后依次编号为 Block1~Block5 。每一个块内包含若干个卷积层和一个池化层。例如:Block2 包含 2 个卷积层( conv3-256 )和 1 个池化层( maxpool )。并且同一块内,卷积层的通道( channel )数是相同的。
根据下图给出的 VGG16 结构图, VGG16 的输入图像是 224x224x3 ,过程中通道数翻倍,由 64 依次增加到 128 ,再到 256 ,直至 512 保持不变,不再翻倍;高和宽变减半,由 224→112→56→28→14→7 。
(4) 权重参数
VGG 的结构简单,但是所包含的权重数目却很大,达到了 139,357,544 个参数。这些参数包括卷积核权重和全连接层权重。因此它具有很高的拟合能力。
API 介绍
整个系统的 webserver 提供了 train 、process 、count、search 、delete 五个 API ,用户可以进行图片加载、加载进度查询、Milvus 的向量条数查询、图片检索、Milvus 表删除。这五个 API 涵盖了以图搜图系统的全部基础功能,下面会对每个基础功能进行介绍。
(1) Train
train API 的参数如下表所示:
在进行相似图片检索之前,需要将图片库加载进 Milvus,此时调用 train API 将图片的路径传入系统。因为 Milvus 仅支持向量数据的检索,故而需要将图片转化为特征向量,转化过程主要利用 Python 调用 VGG 模型来实现:
from preprocessor.vggnet import VGGNet
norm_feat = model.vgg_extract_feat(img_path)
当获取到图片的特征向量之后,再将这些向量利用 Milvus 的 insert_vectors 的接口导入 Milvus 里面:
from indexer.index import milvus_client, insert_vectors
status, ids = insert_vectors(index_client, table_name, vectors)
将这些特征向量导入 Milvus 之后,Milvus 会给每个向量分配一个唯一的 ID,为了后面检索时方便根据特征向量 ID 查找其对应的图片,需要将每个特征向量的 ID 和其对应图片的关系保存起来:
from diskcache import Cache
for i in range(len(names)):
cache[ids[i]] = names[i]
当调用 train API ,通过以上三步就将图片转成向量存入 Milvus 了。
(2) Process
process API 的 methods 为 GET,调用时不需要传入其他参数。process API 可以查看图片加载的进度,调用之后会看到已经加载转化的图片数和传入路径下的总图片数。
(3) Count
count API 的 methods 为 POST,调用时也不需要传入其他参数。count API 可以查看当前 Milvus 里的向量总数,每一条向量都是由一张图片转化而来。
(4) Search
search API 的参数如下表所示:
当你选择好一张图片进行相似图片检索时,就可以调用 search API。当把待搜索的图片传入系统时,首先还是调用 VGG 模型将图片转化为向量:
from preprocessor.vggnet import VGGNet
norm_feat = model.vgg_extract_feat(img_path)
得到待搜索图片的向量之后,再调用 Milvus 的 search_vectors 的接口进行相似向量检索:
from milvus import Milvus, IndexType, MetricType, Status
status, results = client.search_vectors(table_name=table_name, query_records=vectors, top_k=top_k, nprobe=16)
搜索出与目标向量相似的向量 ID 之后,再根据先前存储的向量 ID 和图片名称的对应关系检索出对应的图片名称:
from diskcache import Cache
def query_name_from_ids(vids):
res =
cache = Cache(default_cache_dir)
for i in vids:
if i in cache:
res.append(cache[i])
return res
当调用 search API ,通过以上三步就可以将与目标图片相似的图片搜索出来了。
(5) Delete
delete API 的 methods 为 POST,调用时不需要传入其他参数。delete API 会删除 Milvus 里面的表,清空以前导入的向量数据。
镜像构建
(1) 构建 pic-search-webserver 镜像
首先拉取 Milvus bootcamp 的代码,然后利用我们提供的 Dockerfile 构建镜像:
$ git clone https://github.com/milvus-io/bootcamp.git
$ cd bootcamp/solutions/pic_search/webserver
# 构建镜像
$ docker build -t pic-search-webserver .
# 查看生成的镜像
$ docker images | grep pic-search-webserver
通过上述步骤就可以构建好 webserver 的 docker 镜像。当然,你也可以直接使用我们上传到 dockerhub 的镜像:
$ docker pull milvusbootcamp/pic-search-webserver:0.1.0
(2) 构建 pic-search-webclient 镜像
首先拉取 Milvus bootcamp 的代码,然后利用我们提供的 Dockerfile 构建镜像:
$ git clone https://github.com/milvus-io/bootcamp.git
$ cd bootcamp/solutions/pic_search/webclient
# 构建镜像
$ docker build -t pic-search-webclient .
# 查看生成的镜像
$ docker images | grep pic-search-webclient
通过上述步骤就可以构建好 webclient 的 docker 镜像。当然,你也可以直接使用我们上传到 dockerhub 的镜像:
$ docker pull milvusbootcamp/pic-search-webclient:0.1.0
系统部署
我们提供了 GPU 部署方案和 CPU 部署方案,用户可以自行选择。详细的部署流程可以参考链接:
https://github.com/milvus-io/bootcamp/blob/0.6.0/solutions/pic_search/README.md
Step 1 启动 Milvus Docker
详细步骤可以参考链接:
https://milvus.io/cn/docs/v0.6.0/guides/get_started/install_milvus/install_milvus.md
Step 2 启动 pic-search-webserver docker
$ docker run -d --name zilliz_search_images_demo \
-v IMAGE_PATH1:/tmp/pic1 \
-v IMAGE_PATH2:/tmp/pic2 \
-p 35000:5000 \
-e "DATA_PATH=/tmp/images-data" \
-e "MILVUS_HOST=192.168.1.123" \
milvusbootcamp/pic-search-webserver:0.1.0
Step 3 启动 pic-search-webclient docker
$ docker run --name zilliz_search_images_demo_web \
-d --rm -p 8001:80 \
-e API_URL=http://192.168.1.123:35000 \
milvusbootcamp/pic-search-webclient:0.1.0
整个以图搜图系统只需三步就可以部署好了。
界面展示
按照上述流程部署完成之后,在浏览器中输入 " localhost:8001 " 就可以访问以图搜图界面了。
在路径框中填入图片路径进行加载,等待图片全部转换成向量并加载到 Milvus之后就可以进行图片检索了:
结语
本文利用 Milvus 和 VGG 搭建起了以图搜图系统,展示了 Milvus 在非结构化数据处理中的应用Milvus 向量相似度检索引擎可以兼容各种深度学习平台,搜索十亿向量仅毫秒响应。
相关推荐
- Python自动化脚本应用与示例(python办公自动化脚本)
-
Python是编写自动化脚本的绝佳选择,因其语法简洁、库丰富且跨平台兼容性强。以下是Python自动化脚本的常见应用场景及示例,帮助你快速上手:一、常见自动化场景文件与目录操作...
- Python文件操作常用库高级应用教程
-
本文是在前面《Python文件操作常用库使用教程》的基础上,进一步学习Python文件操作库的高级应用。一、高级文件系统监控1.1watchdog库-实时文件系统监控安装与基本使用:...
- Python办公自动化系列篇之六:文件系统与操作系统任务
-
作为高效办公自动化领域的主流编程语言,Python凭借其优雅的语法结构、完善的技术生态及成熟的第三方工具库集合,已成为企业数字化转型过程中提升运营效率的理想选择。该语言在结构化数据处理、自动化文档生成...
- 14《Python 办公自动化教程》os 模块操作文件与文件夹
-
在日常工作中,我们经常会和文件、文件夹打交道,比如将服务器上指定目录下文件进行归档,或将爬虫爬取的数据根据时间创建对应的文件夹/文件,如果这些还依靠手动来进行操作,无疑是费时费力的,这时候Pyt...
- python中os模块详解(python os.path模块)
-
os模块是Python标准库中的一个模块,它提供了与操作系统交互的方法。使用os模块可以方便地执行许多常见的系统任务,如文件和目录操作、进程管理、环境变量管理等。下面是os模块中一些常用的函数和方法:...
- 21-Python-文件操作(python文件的操作步骤)
-
在Python中,文件操作是非常重要的一部分,它允许我们读取、写入和修改文件。下面将详细讲解Python文件操作的各个方面,并给出相应的示例。1-打开文件...
- 轻松玩转Python文件操作:移动、删除
-
哈喽,大家好,我是木头左!Python文件操作基础在处理计算机文件时,经常需要执行如移动和删除等基本操作。Python提供了一些内置的库来帮助完成这些任务,其中最常用的就是os模块和shutil模块。...
- Python 初学者练习:删除文件和文件夹
-
在本教程中,你将学习如何在Python中删除文件和文件夹。使用os.remove()函数删除文件...
- 引人遐想,用 Python 获取你想要的“某个人”摄像头照片
-
仅用来学习,希望给你们有提供到学习上的作用。1.安装库需要安装python3.5以上版本,在官网下载即可。然后安装库opencv-python,安装方式为打开终端输入命令行。...
- Python如何使用临时文件和目录(python目录下文件)
-
在某些项目中,有时候会有大量的临时数据,比如各种日志,这时候我们要做数据分析,并把最后的结果储存起来,这些大量的临时数据如果常驻内存,将消耗大量内存资源,我们可以使用临时文件,存储这些临时数据。使用标...
- Linux 下海量文件删除方法效率对比,最慢的竟然是 rm
-
Linux下海量文件删除方法效率对比,本次参赛选手一共6位,分别是:rm、find、findwithdelete、rsync、Python、Perl.首先建立50万个文件$testfor...
- Python 开发工程师必会的 5 个系统命令操作库
-
当我们需要编写自动化脚本、部署工具、监控程序时,熟练操作系统命令几乎是必备技能。今天就来聊聊我在实际项目中高频使用的5个系统命令操作库,这些可都是能让你效率翻倍的"瑞士军刀"。一...
- Python常用文件操作库使用详解(python文件操作选项)
-
Python生态系统提供了丰富的文件操作库,可以处理各种复杂的文件操作需求。本教程将介绍Python中最常用的文件操作库及其实际应用。一、标准库核心模块1.1os模块-操作系统接口主要功能...
- 11. 文件与IO操作(文件io和网络io)
-
本章深入探讨Go语言文件处理与IO操作的核心技术,结合高性能实践与安全规范,提供企业级解决方案。11.1文件读写11.1.1基础操作...
- Python os模块的20个应用实例(python中 import os模块用法)
-
在Python中,...
- 一周热门
-
-
C# 13 和 .NET 9 全知道 :13 使用 ASP.NET Core 构建网站 (1)
-
因果推断Matching方式实现代码 因果推断模型
-
git pull命令使用实例 git pull--rebase
-
面试官:git pull是哪两个指令的组合?
-
git 执行pull错误如何撤销 git pull fail
-
git pull 和git fetch 命令分别有什么作用?二者有什么区别?
-
git fetch 和git pull 的异同 git中fetch和pull的区别
-
git pull 之后本地代码被覆盖 解决方案
-
还可以这样玩?Git基本原理及各种骚操作,涨知识了
-
git命令之pull git.pull
-
- 最近发表
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)
- c语言 switch (34)
- git commit (34)