MySQL 表分区?涨知识了(mysql的表分区)
wptr33 2025-03-24 21:22 7 浏览
- 1. 什么是表分区
- 2. 分区的两种方式
- 2.1 水平切分
- 2.2 垂直切分
- 3. 为什么需要表分区
- 4. 分区实践
- 4.1 RANGE 分区
- 4.2 LIST 分区
- 4.3 HASH 分区
- 4.4 KEY 分区
- 4.5 COLUMNS 分区
- 5. 常见分区命令
- 6. 小结
松哥之前写过文章跟大家介绍过用 MyCat 实现 MySQL 的分库分表,不知道有没有小伙伴研究过,MySQL 其实也自带了分区功能,我们可以创建一个带有分区的表,而且不需要借助任何外部工具,今天我们就一起来看看。
1. 什么是表分区
小伙伴们知道,MySQL 数据库中的数据是以文件的形势存在磁盘上的,默认放在 /var/lib/mysql/ 目录下面,我们可以通过 show variables like '%datadir%'; 命令来查看:
我们进入到这个目录下,就可以看到我们定义的所有数据库了,一个数据库就是一个文件夹,一个库中,有其对应的表的信息,如下:
在 MySQL 中,如果存储引擎是 MyISAM,那么在 data 目录下会看到 3 类文件: .frm 、 .myi 、 .myd ,作用如下:
- *.frm :这个是表定义,是描述表结构的文件。
- *.myd :这个是数据信息文件,是表的数据文件。
- *.myi :这个是索引信息文件。
如果存储引擎是 InnoDB , 那么在 data 目录下会看到两类文件: .frm 、 .ibd ,作用分别如下:
- *.frm :表结构文件。
- *.ibd :表数据和索引的文件。
无论是哪种存储引擎,只要一张表的数据量过大,就会导致 *.myd 、 *.myi 以及 *.ibd 文件过大,数据的查找就会变的很慢。
为了解决这个问题,我们可以利用 MySQL 的分区功能,在物理上将这一张表对应的文件,分割成许多小块,如此,当我们查找一条数据时,就不用在某一个文件中进行整个遍历了,我们只需要知道这条数据位于哪一个数据块,然后在那一个数据块上查找就行了;另一方面,如果一张表的数据量太大,可能一个磁盘放不下,这个时候,通过表分区我们就可以把数据分配到不同的磁盘里面去。
MySQL 从 5.1 开始添加了对分区的支持,分区的过程是将一个表或索引分解为多个更小、更可管理的部分。对于开发者而言,分区后的表使用方式和不分区基本上还是一模一样,只不过在物理存储上,原本该表只有一个数据文件,现在变成了多个,每个分区都是独立的对象,可以独自处理,也可以作为一个更大对象的一部分进行处理。
需要注意的是,分区功能并不是在存储引擎层完成的,常见的存储引擎如 InnoDB 、 MyISAM 、 NDB 等都支持分区。但并不是所有的存储引擎都支持,如 CSV 、 FEDORATED 、 MERGE 等就不支持分区,因此在使用此分区功能前,应该对选择的存储引擎对分区的支持有所了解。
2. 分区的两种方式
不同于 MyCat 中既可以垂直切分又可以水平切分,MySQL 数据库支持的分区类型为水平分区,它不支持垂直分区。
2.1 水平切分
先来一张简单的示意图,大家感受一下什么是水平切分:
假设我的 DB 中有 table-1、table-2 以及 table-3 三张表,水平切分就是拿着我 40 米大刀,对准黑色的线条,砍一剑或者砍 N 剑!
砍完之后,将砍掉的部分放到另外一个数据库实例中,变成下面这样:
这样,原本放在一个 DB 中的 table 现在放在两个 DB 中了,观察之后我们发现:
- 两个 DB 中表的个数都是完整的,就是原来 DB 中有几张表,现在还是几张。
- 每张表中的数据是不完整的,数据被拆分到了不同的 DB 中去了。
这就是数据库的水平切分,也可以理解为按照数据行进行切分,即按照表中某个字段的 某种规则 来将表数据分散到多个库之中,每个表中包含一部分数据,即水平切分不改变表结构。
2.2 垂直切分
先来一张简单的示意图,大家感受一下垂直切分:
所谓的垂直切分就是拿着我 40 米大刀,对准了黑色的线条砍。砍完之后,将不同的表放到不同的数据库实例中去,变成下面这个样子:
这个时候我们发现如下几个特点:
- 每一个数据库实例中的表的数量都是不完整的。
- 每一个数据库实例中表的数据是完整的。
这就是垂直切分。一般来说,垂直切分我们可以按照业务来划分,不同业务的表放到不同的数据库实例中。
MySQL 数据库支持的分区类型为水平分区。
此外,MySQL 数据库的分区是局部分区索引,即一个分区中既存放了数据又存放了索引,目前,MySQL数据库还不支持全局分区(数据存放在各个分区中,但是所有数据的索引放在一个对象中)。
3. 为什么需要表分区
- 可以让单表存储更多的数据。
- 分区表的数据更容易维护,可以通过清除整个分区批量删除大量数据,也可以增加新的分区来支持新插入的数据。另外,还可以对一个独立分区进行优化、检查、修复等操作。
- 部分查询能够从查询条件确定只落在少数分区上,查询速度会很快。
- 分区表的数据还可以分布在不同的物理设备上,从而高效利用多个硬件设备。
- 可以使用分区表来避免某些特殊瓶颈,例如 InnoDB 单个索引的互斥访问、ext3 文件系统的 inode 锁竞争。
- 可以备份和恢复单个分区。
分区的限制和缺点:
- 一个表最多只能有 1024 个分区。
- 如果分区字段中有主键或者唯一索引的列,那么所有主键列和唯一索引列都必须包含进来。
- 分区表无法使用外键约束。
- NULL 值会使分区过滤无效。
- 所有分区必须使用相同的存储引擎。
4. 分区实践
说了这么多,来个例子看一下。
首先我们先来查看一下当前的 MySQL 是否支持分区。
在 MySQL5.6.1 之前可以通过命令 show variables like '%have_partitioning%' 来查看 MySQL 是否支持分区。如果 have_partitioning 的值为 YES,则表示支持分区。
从 MySQL5.6.1 开始, have_partitioning 参数已经被去掉了,而是用 SHOW PLUGINS 来代替。若有 partition 行且 STATUS 列的值为 ACTIVE,则表示支持分区,如下所示:
确认我们的 MySQL 支持分区后,我们就可以开始分区啦!
接下来我们来看几种不同的分区策略。
4.1 RANGE 分区
RANGE 分区比较简单,就是根据某一个字段的值进行分区。 不过这个字段有一个要求,就是必须是主键或者是联合主键中的某个字段。
例如根据 user 表的 id 进行分区:
- 当 id 小于 100,数据插入 p0 分区;
- 当 id 大于等于 100 小于 200 的时候,插入 p1 分区;
- 如果 id 大于等于 200 则插入 p2 分区。
上面的规则涉及到了 id 的所有范围了,如果没有第三条规则,那么插入一个 id 为 300 的记录时,就会报错。
建表 SQL 如下:
create table user(
id int primary key,
username varchar(255)
)engine=innodb
partition by range(id)(
partition p0 values less than(100),
partition p1 values less than(200),
partition p2 values less than maxvalue
);
表创建成功后,我们进入到 /var/lib/mysql/test08 文件夹中,来看刚刚创建的表文件:
可以看到,此时的数据文件分为好几个了。
在
information_schema.partitions 表中,我们可以查看分区的详细信息:
也可以自己写个 SQL 去查询:
select * from information_schema.partitions where table_schema='test08' and table_name='user'\G
每一行展示一个分区的信息,包括分区的方式、该区的范围、分区的字段、该区目前有几条记录等等。
RANGE 分区有一个比较典型的使用场景,就是按照日期对表进行分区,例如同一年注册的用户放在一个分区中,如下:
create table user(
id int,
username varchar(255),
password varchar(255),
createDate date,
primary key (id,createDate)
)engine=innodb
partition by range(year(createDate))(
partition p2022 values less than(2023),
partition p2023 values less than(2024),
partition p2024 values less than(2025)
);
注意,createDate 是联合主键的一员。如果 createDate 不是主键,只是一个普通字段,那么创建时就会抛出如下错误:
现在,如果我们要查询 2022 年注册的用户,系统就只会去搜索 p2022 这个分区,通过 explain 执行计划可以证实我们的想法:
如果想要删除 2022 年注册的用户,则只需要删除该分区即可:
alter table user drop partition p2022;
由上图可以看到,删除之后,数据就没了。
4.2 LIST 分区
LIST 分区和 RANGE 分区类似,区别在于 LIST 分区是基于列值匹配一个离散值集合中的某个值来进行选择,而非连续的。举个例子大家看下就明白了:
假设我有一个用户表,用户有性别,现在想按照性别将用户分开存储,男性存储在一个分区中,女性存储在一个分区中,SQL 如下:
create table user(
id int,
username varchar(255),
password varchar(255),
gender int,
primary key(id, gender)
)engine=innodb
partition by list(gender)(
partition man values in (1),
partition woman values in (0));
这个表将来就两个分区,分别存储男性和女性,gender 的取值为 1 或者 0,gender 如果取其他值,执行就会出错,最终执行结果如下:
这样分区之后,将来查询男性或者查询女性效率都会比较高,删除某一性别的用户时删除效率也高。
4.3 HASH 分区
HASH 分区的目的是将数据均匀地分布到预先定义的各个分区中,保证各分区的数据量大致都是一样的。在 RANGE 和 LIST 分区中,必须明确指定一个给定的列值或列值集合应该保存在哪个分区中;而在 HASH 分区中,MySQL 自动完成这些工作,用户所要做的只是基于将要进行哈希分区的列指定一个表达式,并且分区的数量。
使用 HASH 分区来分割一个表,要在 CREATE TABLE 语句上添加 PARTITION BY HASH (expr) ,其中 expr 是一个字段或者是一个返回整数的表达式;另外通过 PARTITIONS 属性指定分区的数量,如果没有指定,那么分区的数量默认为 1,另外,HASH 分区不能删除分区,所以不能使用 DROP PARTITION 操作进行分区删除操作。
create table user(
id int,
username varchar(255),
password varchar(255),
gender int,
primary key(id, gender)
)engine=innodb partition by hash(id) partitions 4;
4.4 KEY 分区
KEY 分区和 HASH 分区相似,但是 KEY 分区支持除 text 和 BLOB 之外的所有数据类型的分区,而 HASH 分区只支持数字分区。
KEY 分区不允许使用用户自定义的表达式进行分区,KEY 分区使用系统提供的 HASH 函数进行分区。
当表中存在主键或者唯一索引时,如果创建 KEY 分区时没有指定字段系统默认会首选主键列作为分区字段,如果不存在主键列会选择 非空唯一索引 列作为分区字段。
举个例子:
create table user(
id int,
username varchar(255),
password varchar(255),
gender int,
primary key(id, gender)
)engine=innodb partition by key(id) partitions 4;
4.5 COLUMNS 分区
COLUMN 分区是 5.5 开始引入的分区功能,只有 RANGE COLUMN 和 LIST COLUMN 这两种分区;支持整形、日期、字符串;这种分区方式和 RANGE、LIST 的分区方式非常的相似。
COLUMNS Vs RANGE Vs LIST 分区:
- 针对日期字段的分区不需要再使用函数进行转换了。
- COLUMN 分区支持多个字段作为分区键但是不支持表达式作为分区键。
COLUMNS 支持的类型
- 整形支持:tinyint、smallint、mediumint、int、bigint;不支持 decimal 和 float。
- 时间类型支持:date、datetime。
- 字符类型支持:char、varchar、binary、varbinary;不支持text、blob。
举个例子看下:
create table user(
id int,
username varchar(255),
password varchar(255),
gender int,
createDate date,
primary key(id, createDate)
)engine=innodb PARTITION BY RANGE COLUMNS(createDate) (
PARTITION p0 VALUES LESS THAN ('1990-01-01'),
PARTITION p1 VALUES LESS THAN ('2000-01-01'),
PARTITION p2 VALUES LESS THAN ('2010-01-01'),
PARTITION p3 VALUES LESS THAN ('2020-01-01'),
PARTITION p4 VALUES LESS THAN MAXVALUE
);
这是 RANGE COLUMNS,分区值是连续的。
再来看 LIST COLUMNS 分区,这个就类似于枚举了:
create table user(
id int,
username varchar(255),
password varchar(255),
gender int,
createDate date,
primary key(id, createDate)
)engine=innodb PARTITION BY LIST COLUMNS(createDate) (
PARTITION p0 VALUES IN ('1990-01-01'),
PARTITION p1 VALUES IN ('2000-01-01'),
PARTITION p2 VALUES IN ('2010-01-01'),
PARTITION p3 VALUES IN ('2020-01-01')
);
5. 常见分区命令
- 添加分区:
alter table user add partition (partition p3 values less than (4000)); -- range 分区
alter table user add partition (partition p3 values in (40)); -- lists分区
- 删除表分区( 会删除数据 ):
alter table user drop partition p30;
- 删除表的所有分区(不会丢失数据):
alter table user remove partitioning;
- 重新定义 range 分区表(不会丢失数据):
alter table user partition by range(salary)(
partition p1 values less than (2000),
partition p2 values less than (4000));
- 重新定义 hash 分区表(不会丢失数据):
alter table user partition by hash(salary) partitions 7;
- 合并分区:把 2 个分区合并为一个,不会丢失数据:
alter table user reorganize partition p1,p2 into (partition p1 values less than (1000));
原文链接:
https://mp.weixin.qq.com/s?__biz=MzI1NDY0MTkzNQ==&mid=2247496919&idx=1&sn=
d888c45419da224f174e4c5137715a7b&utm_source=tuicool&utm_medium=referral
相关推荐
- 每天一个AI姬,AMD核显用户有福了,AI绘画打破 NVIDIA 显卡垄断
-
使用StableDiffusion进行AI绘画,并不一定只能使用NVIDIA英伟达显卡,甚至,也不一定只能使用独立显卡。今天我们使用AMD6800H核显,并安装了StableDif...
- NETworkManager:功能强大的网络管理与问题排除工具
-
关于NETworkManagerNETworkManager是一款功能强大的网络管理与问题排除工具,该工具完全开源,可以帮助广大研究人员轻松管理目标网络系统并排除网络疑难问题。该工具使用远程桌面、Po...
- AMD也能深度学习+免费AI绘画:StableDiffusion+ROCm部署教程!
-
某国政客扇扇嘴皮子,CN玩硬件和深度学习的圈子里就掀起了一场风暴,这就是著名的嘴皮子效应(误)。没了高性能计算的A100H100倒也能理解,但是美利坚这波把RTX4090禁售了就让人无语了,所以不少做...
- windows 下编译 python_rtmpstream
-
最近在研究数字人,看了大咖的项目(https://github.com/lipku/metahuman-stream),尝试编译此项目的依赖项目python_rtmpstream(https://gi...
- 如何使用 Python 操作 Git 代码?GitPython 入门介绍
-
花下猫语:今天,我在查阅如何用Python操作Gitlab的时候,看到这篇文章,觉得还不错,特分享给大家。文中还提到了其它几种操作Git的方法,后续有机会的话,再陆续分享之~~作者:匿蟒...
- 网上看了不少,终于把ZlmediaKit流媒体框架搭建起来啦
-
你都站在2023年代了,视频通话、视频直播、视频会议、视频监控就是风口浪尖上的猪师兄,只要你学那么一丁点,拿个高薪的工作不过分吧!我也是半瓶子晃荡的,所以路人呀,共学习,同进步!本篇开始,只讲在Lin...
- MacDown:一款 macOS 的强大 Markdown 编辑器
-
大家好,很高兴又见面了,我是"...
- ZLMediaKit安装配置和推拉流
-
一、ZLMediaKit库简介ZLMediaKit是一个基于...
- 大神赞过的:学习 WebAssembly 汇编语言程序设计
-
文/阿里淘系F(x)Team-旭伦随着前端页面变得越来越复杂,javascript的性能问题一再被诟病。而Javascript设计时就不是为了性能优化设计的,这使得浏览器上可以运行的本地语言一...
- 【Docker】部署WVP视频监控平台
-
回来Docker系列,今天将会跟大家分享一则关于开源WVP视频监控平台的搭建。先说结论吧,一开始按照网上说的一步一步搭建没有搭建成功,不知道是版本太旧还是我这边机器有问题,尝试了好几个不同方式的搭建都...
- MongoDB+GridFS存储文件方案
-
GridFS是MongoDB的一个内置功能,它提供一组文件操作的API以利用MongoDB存储文件,GridFS的基本原理是将文件保存在两个Collection中,一个保存文件索引,一个保存文...
- 【开源】强大、创新且直观的 EDA套件
-
今天分享的LibrePCB是...
- Ollama如何制作自己的大模型?
-
背景Llama3发布了,这次用了...
- Ollama使用指南【超全版】
-
一、Ollama快速入门Ollama是一个用于在本地运行大型语言模型的工具,下面将介绍如何在不同操作系统上安装和使用Ollama。官网:https://ollama.comGithub:http...
- 基于区块链的价值共享互联网即时通讯应用平台源码免费分享
-
——————关注转发之后私信回复【源码】即可免费获取到本项目所有源码基于区块链的价值共享互联网即时通讯应用平台,是一个去中心化的任何人都可以使用的通讯网络,是一款基于区块链的价值共享互联网即时通讯AP...
- 一周热门
-
-
C# 13 和 .NET 9 全知道 :13 使用 ASP.NET Core 构建网站 (1)
-
因果推断Matching方式实现代码 因果推断模型
-
git pull命令使用实例 git pull--rebase
-
git 执行pull错误如何撤销 git pull fail
-
面试官:git pull是哪两个指令的组合?
-
git fetch 和git pull 的异同 git中fetch和pull的区别
-
git pull 和git fetch 命令分别有什么作用?二者有什么区别?
-
还可以这样玩?Git基本原理及各种骚操作,涨知识了
-
git pull 之后本地代码被覆盖 解决方案
-
git命令之pull git.pull
-
- 最近发表
-
- 每天一个AI姬,AMD核显用户有福了,AI绘画打破 NVIDIA 显卡垄断
- NETworkManager:功能强大的网络管理与问题排除工具
- AMD也能深度学习+免费AI绘画:StableDiffusion+ROCm部署教程!
- windows 下编译 python_rtmpstream
- 如何使用 Python 操作 Git 代码?GitPython 入门介绍
- 网上看了不少,终于把ZlmediaKit流媒体框架搭建起来啦
- MacDown:一款 macOS 的强大 Markdown 编辑器
- ZLMediaKit安装配置和推拉流
- 大神赞过的:学习 WebAssembly 汇编语言程序设计
- 【Docker】部署WVP视频监控平台
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)
- c语言 switch (34)
- git commit (34)