Scrapy 爬虫完整案例-提升篇(scraper爬虫)
wptr33 2025-05-08 06:56 7 浏览
1 Scrapy 爬虫完整案例-提升篇
1.1 Scrapy 爬虫进阶案例一
Scrapy 爬虫案例:东莞阳光热线问政平台。
网站地址:
http://wz.sun0769.com/index.php/question/questionType?type=4
项目的目标:爬取投诉帖子的编号、帖子的url、帖子的标题,和帖子里的内容。
案例步骤:
第一步:创建项目。
在 dos下切换到目录
D:\scrapy_project
新建一个新的爬虫项目:scrapy startproject dg_sun
第二步:明确需要爬取的内容字段,分析网站的结构( URL、需要爬取的字段的结构)。
【分析分页URL地址】
从图片中看到投诉信息列表有3192页。
第一页的链接地址:
http://wz.sun0769.com/index.php/question/questionType?type=4&page=0
第二页的链接地址:
http://wz.sun0769.com/index.php/question/questionType?type=4&page=30
最后一页的链接地址:
http://wz.sun0769.com/index.php/question/questionType?type=4&page=95730
通过分析我们得知,每一页的的链接地址page的值递增30,就是下一页的地址。
【分析每一条投诉信息】
在列表里点某条投诉信息,进入到某条投诉详情页。
投诉信息的编号、标题、内容如下:
查看这些字段在页面里的位置。
通过对页面的分析,得出需要保存的数据字段在页面上的位置。
#标题
title=response.xpath('//div[contains(@class, "pagecenterp3")]//strong/text()').extract()[0]
# 编号是标题里的一部分,通过字符串切片,得到编号的内容。
id =title.split(' ')[-1].split(":")[-1]
# 内容
content =response.xpath('//div[@class="c1 text14_2"]/text()').extract()[0]
#链接就是请求返回的URL
url=response.url
第三步:编写 items.py 文件,设置好需要保存的数据字段。
import scrapy
class SunItem(scrapy.Item):
# define the fields for your item here like:
# 标题
title = scrapy.Field()
# 编号
id = scrapy.Field()
# 内容
content = scrapy.Field()
# 链接
url = scrapy.Field()
第四步:创建爬虫。
在 dos下切换到目录
D:\scrapy_project\dg_sun\dg_sun\spiders
用命令 scrapy genspider -t crawl sun " wz.sun0769.com " 创建爬虫。
第五步:编写爬虫文件。
import scrapy,sys,os
# 导入CrawlSpider类和Rule
from scrapy.spiders import CrawlSpider, Rule
# 导入链接规则匹配类,用来提取符合规则的连接
from scrapy.linkextractors import LinkExtractor
path = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.path.append(path)
from dg_sun.items import SunItem
class SunSpider(CrawlSpider):
name = 'sun'
allowed_domains = ['wz.sun0769.com']
start_urls = ['http://wz.sun0769.com/index.php/question/questionType?type=4&page=0']
#多条 Rule
rules = (
Rule(LinkExtractor(allow=r'type=4&page=\d+')),
Rule(LinkExtractor(allow=r'/html/question/\d+/\d+.shtml'), callback = 'parse_item',follow = True),
)
def parse_item(self, response):
item = SunItem()
#标题
item['title'] = response.xpath('//div[contains(@class, "pagecenter p3")]//strong/text()').extract()[0]
# 编号
item['id'] = item['title'].split(' ')[-1].split(":")[-1]
# 内容
item['content'] = response.xpath('//div[@class="c1 text14_2"]/text()').extract()[0]
# 链接
item['url'] = response.url
yield item
第六步:编写管道文件:SunPipeline。
import json
class SunPipeline(object):
# __init__方法是可选的,做为类的初始化方法
def __init__(self):
# 创建了一个 sun.json 文件,用来保存数据
self.filename = open("sun.json", "wb")
# process_item方法是必须写的,用来处理item数据
def process_item(self, item, spider):
text = json.dumps(dict(item), ensure_ascii = False) + ",\n"
# 把数据写入到sun.json 文件中,编码为:utf-8
self.filename.write(text.encode("utf-8"))
return item
# close_spider方法是可选的,结束时调用这个方法
def close_spider(self, spider):
self.filename.close()
第七步:修改 settings 文件。
在settings.py文件配置里指定刚才编写的管道文件名:SunPipeline。
设置爬虫请求的默认头信息。
第八步:运行爬虫。
在 dos下切换到目录
D:\scrapy_project\dg_sun\dg_sun 下
通过命令运行爬虫 :scrapy crawl sun
第九步:查看爬取的结果。
查看新建的sun.json 数据文件。
1.2 Scrapy 爬虫进阶案例二
Scrapy 爬虫案例二:完善东莞阳光热线问政平台案例。
上面我们讲解了Scrapy 爬虫案例:东莞阳光热线问政平台。查看爬取后的数据,发现3个问题。
(问题一)提取的投诉内容前面有空格。
(问题二)个别投诉帖子,提取的内容不全,例如下面帖子有2段话,只是提取了第一段话:
{"id": "195592 ", "title": " 提问:南城宏远外国语学校门口交通秩序混乱 编号:195592 ", "content": " 开学季到来,金丰路宏远外国语学校路段每天早上又恢复塞车,此路段有宏外及阳光二小两所学校,每天早上学生家长送孩子上学车辆十分密集,加上周边小区居民上班高峰,极易造成塞车,更要命的是宏外路口卖花,卖水果三轮车偏偏停在路口,宏外学生家长路边随意停车,没有做到即停即走,其实家长只要停车把孩子交给学校义工或保安就可以开车离开了,而很多家长都是停车然后送孩子进学校再出来开车,而这时候后面车龙已经排的很长了,有些司机加塞抢道更是加重了道路的拥堵。", "url": "
http://wz.sun0769.com/html/question/201809/384482.shtml"},
分析页面的结构:
1、内容如果有几段话,每一段话有个<br>
2、每段话前有一串字符:  (文本里的空字符);
通过 XPath helper 去定位内容,查看结果是 OK 的。
item['content'] = response.xpath('//div[@class="c1 text14_2"]/text()').extract()返回的是文本列表,在我们在代码里取得是 extract()[0],所以取得内容是第一段话。
修改爬虫文件代码,只取 content 内容,看爬取得到的结果是什么。
运行的结果:
其中一条数据:{"content": [" 1.城轨D出口长期封闭导致红珊瑚附近居民跨越马路,造成相关大的安全隐患!", " 2.广铁的工作人员说领导说不准开,成本太高。但是附近那么多居民横跨马路如果一旦造成人员伤亡是否广铁公司或者松山湖管委会负责人?", " 3.若觉得成本太高,可以开放楼梯让乘客走下去和上来,", " 这么多投诉之后管委会,请问下这就是为人民服务的政府吗?", " 今天下班看到一大群人在路中间跑来跑去,出人命的时候想问下管委会是怎么给人民交代!", " "]},
问题一和问题二处理的方案:
#获取每个投诉的 content 内容列表
content = response.xpath('//div[@class="c1 text14_2"]/text()').extract()
#把列表转化成字符串,并去掉前面的空格
item['content'] = "".join(content).strip()
重新运行看结果:
(问题三)很多投诉内容为空。
经过分析页面,发现个别投诉信息上传了图片。
页面元素分析:
如果投诉有图片,内容的路径是如下:
content = response.xpath('//div[@class="contentext"]/text()').extract()
问题三的处理方案:修改爬虫代码
# 内容,先使用有图片情况下的匹配规则,如果有内容,返回所有内容的列表集合
content = response.xpath('//div[@class="contentext"]/text()').extract()
# 如果没有内容,则返回空列表,则使用无图片情况下的匹配规则
if len(content) == 0:
content = response.xpath('//div[@class="c1 text14_2"]/text()').extract()
item['content'] = "".join(content).strip()
else:
item['content'] = "".join(content).strip()
分析完问题,有了处理方案之后,重新完整的实现爬虫案例。
案例步骤:
第一步:创建项目。
在 dos下切换到目录
D:\scrapy_project
新建一个新的爬虫项目:scrapy startproject dg_sun2
第二步:明确需要爬取的内容字段,分析网站的结构( URL、需要爬取的字段的结构)。
【分析分页URL地址】
从图片中看到投诉信息列表有3192页。
第一页的链接地址:
http://wz.sun0769.com/index.php/question/questionType?type=4&page=0
第二页的链接地址:
http://wz.sun0769.com/index.php/question/questionType?type=4&page=30
最后一页的链接地址:
http://wz.sun0769.com/index.php/question/questionType?type=4&page=95730
通过分析我们得知,每一页的的链接地址page的值递增30,就是下一页的地址。
【分析每一条投诉信息】
在列表里点某条投诉信息,进入到某条投诉详情页。
投诉信息的编号、标题、内容如下:
查看这些字段在页面里的位置。
通过对页面的分析,得出需要保存的数据字段在页面上的位置。
#标题
title=response.xpath('//div[contains(@class, "pagecenterp3")]//strong/text()').extract()[0]
# 编号是标题里的一部分,通过字符串切片,得到编号的内容。
id =title.split(' ')[-1].split(":")[-1]
# 内容,先使用有图片情况下的匹配规则,如果有内容,返回所有内容的列表集合
content = response.xpath('//div[@class="contentext"]/text()').extract()
# 如果没有内容,则返回空列表,则使用无图片情况下的匹配规则
if len(content) == 0:
content = response.xpath('//div[@class="c1 text14_2"]/text()').extract()
item['content'] = "".join(content).strip()
else:
item['content'] = "".join(content).strip()
#链接就是请求返回的URL
url=response.url
第三步:编写 items.py 文件,设置好需要保存的数据字段。
import scrapy
class SunItem(scrapy.Item):
# define the fields for your item here like:
# 标题
title = scrapy.Field()
# 编号
id = scrapy.Field()
# 内容
content = scrapy.Field()
# 链接
url = scrapy.Field()
第四步:创建爬虫。
在 dos下切换到目录
D:\scrapy_project\dg_sun\dg_sun\spiders
用命令 scrapy genspider -t crawl sun " wz.sun0769.com " 创建爬虫。
第五步:编写爬虫文件。
import scrapy,sys,os
# 导入CrawlSpider类和Rule
from scrapy.spiders import CrawlSpider, Rule
# 导入链接规则匹配类,用来提取符合规则的连接
from scrapy.linkextractors import LinkExtractor
path = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.path.append(path)
from dg_sun.items import SunItem
class SunSpider(CrawlSpider):
name = 'sun'
allowed_domains = ['wz.sun0769.com']
start_urls = ['http://wz.sun0769.com/index.php/question/questionType?type=4&page=0']
# 投诉分页链接的提取规则,返回的符合匹配规则的链接匹配对象的列表(这里提取的是分页的链接)
pagelink = LinkExtractor(allow=r'type=4&page=\d+')
# 投诉详情页内容链接的提取规则,返回的符合匹配规则的链接匹配对象的列表
Details = LinkExtractor(allow=r'/html/question/\d+/\d+.shtml')
# 多条 Rule
rules = (
# 提取匹配,并跟进链接(没有 callback 意味着 follow 默认为 True )
Rule(pagelink),
Rule(Details, callback='parse_item', follow=True),
)
# 指定的回调函数
def parse_item(self, response):
item = SunItem()
# 标题
item['title'] = response.xpath('//div[contains(@class, "pagecenter p3")]//strong/text()').extract()[0]
# 编号
item['id'] = item['title'].split(' ')[-1].split(":")[-1]
# 内容,先使用有图片情况下的匹配规则,如果有内容,返回所有内容的列表集合
content = response.xpath('//div[@class="contentext"]/text()').extract()
# 如果没有内容,则返回空列表,则使用无图片情况下的匹配规则
if len(content) == 0:
content = response.xpath('//div[@class="c1 text14_2"]/text()').extract()
item['content'] = "".join(content).strip()
else:
item['content'] = "".join(content).strip()
# 链接
item['url'] = response.url
yield item
第六步:编写管道文件:SunPipeline。
import json
class SunPipeline(object):
# __init__方法是可选的,做为类的初始化方法
def __init__(self):
# 创建了一个 sun.json 文件,用来保存数据
self.filename = open("sun.json", "wb")
# process_item方法是必须写的,用来处理item数据
def process_item(self, item, spider):
text = json.dumps(dict(item), ensure_ascii = False) + ",\n"
# 把数据写入到sun.json 文件中,编码为:utf-8
self.filename.write(text.encode("utf-8"))
return item
# close_spider方法是可选的,结束时调用这个方法
def close_spider(self, spider):
self.filename.close()
第七步:修改 settings 文件。
在settings.py文件配置里指定刚才编写的管道文件名:SunPipeline。
设置爬虫请求的默认头信息。
第八步:运行爬虫。
在 dos下切换到目录
D:\scrapy_project\dg_sun2\dg_sun 下
通过命令运行爬虫 :scrapy crawl sun
第九步:查看爬取的结果。
查看新建的sun.json 数据文件。
1.3 Scrapy 爬虫进阶案例三
Scrapy 爬虫案例三:用 Spider 类改写“东莞阳光热线问政平台”案例。
案例步骤:
第一步:创建项目。
在 dos下切换到目录
D:\scrapy_project
新建一个新的爬虫项目:scrapy startproject dg_sun3
第二步:明确需要爬取的内容字段,分析网站的结构( URL、需要爬取的字段的结构)。
【分析分页URL地址】
从图片中看到投诉信息列表有3192页。
第一页的链接地址:
http://wz.sun0769.com/index.php/question/questionType?type=4&page=0
第二页的链接地址:
http://wz.sun0769.com/index.php/question/questionType?type=4&page=30
最后一页的链接地址:
http://wz.sun0769.com/index.php/question/questionType?type=4&page=95730
通过分析我们得知,每一页的的链接地址page的值递增30,就是下一页的地址。
【每一页帖子的链接集合】
# 每一页帖子的链接集合
links = response.xpath('//div[@class="greyframe"]/table/a[@class="news14"]/@href').extract()
【分析每一条投诉字段信息】
在列表里点某条投诉信息,进入到某条投诉详情页。
投诉信息的编号、标题、内容如下:
查看这些字段在页面里的位置。
通过对页面的分析,得出需要保存的数据字段在页面上的位置。
# 标题
title=response.xpath('//div[contains(@class, "pagecenterp3")]//strong/text()').extract()[0]
# 编号是标题里的一部分,通过字符串切片,得到编号的内容。
id =title.split(' ')[-1].split(":")[-1]
# 内容,先使用有图片情况下的匹配规则,如果有内容,返回所有内容的列表集合
content = response.xpath('//div[@class="contentext"]/text()').extract()
# 如果没有内容,则返回空列表,则使用无图片情况下的匹配规则
if len(content) == 0:
content = response.xpath('//div[@class="c1 text14_2"]/text()').extract()
item['content'] = "".join(content).strip()
else:
item['content'] = "".join(content).strip()
第三步:编写 items.py 文件,设置好需要保存的数据字段。
import scrapy
class SunItem(scrapy.Item):
# define the fields for your item here like:
# 标题
title = scrapy.Field()
# 编号
id = scrapy.Field()
# 内容
content = scrapy.Field()
# 链接
url = scrapy.Field()
第四步:创建爬虫。
在 dos下切换到目录
D:\scrapy_project\dg_sun3\dg_sun\spiders
用命令 scrapy genspider sun " wz.sun0769.com " 创建爬虫。
第五步:编写爬虫文件。
import scrapy,sys,os
path = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.path.append(path)
from dg_sun.items import SunItem
class SunSpider(scrapy.Spider):
name = 'sun'
allowed_domains = ['wz.sun0769.com']
url = 'http://wz.sun0769.com/index.php/question/questionType?type=4&page='
offset = 0
start_urls = [url + str(offset)]
# 第一个方法 :parse(self, response),处理(提取)每一页链接。
def parse(self, response):
# 每一页帖子的链接集合
links = response.xpath('//div[@class="greyframe"]/table//td/a[@class="news14"]/@href').extract()
# 迭代取出集合里的链接。
for link in links:
# 提取列表里的每个链接,发送请求,放到请求队列里,并调用回调函数 parse_item(self, response)来处理。
yield scrapy.Request(link,callback=self.parse_item)
#offset 不断自增,直到最后一页,在停止自增前,不断发送新的页面请求,并调用自己(parse()方法)来处理。
if self.offset <= 95730:
self.offset += 30
# 发送请求,放到请求队列里,调用 self.parse()方法。
yield scrapy.Request(self.url+str(self.offset), callback=self.parse)
# 第二个方法 :parse_item(self, response),处理每一页的每一个帖子。
def parse_item(self, response):
item = SunItem()
# 标题
item['title'] = response.xpath('//div[contains(@class, "pagecenter p3")]//strong/text()').extract()[0]
# 编号
item['id'] = item['title'].split(' ')[-1].split(":")[-1]
# 内容,先使用有图片情况下的匹配规则,如果有内容,返回所有内容的列表集合
content = response.xpath('//div[@class="contentext"]/text()').extract()
# 如果没有内容,则返回空列表,则使用无图片情况下的匹配规则
if len(content) == 0:
content = response.xpath('//div[@class="c1 text14_2"]/text()').extract()
item['content'] = "".join(content).strip()
else:
item['content'] = "".join(content).strip()
# 链接
item['url'] = response.url
# item 交给管道
yield item
第六步:编写管道文件:SunPipeline。
import json
class SunPipeline(object):
# __init__方法是可选的,做为类的初始化方法
def __init__(self):
# 创建了一个 sun3.json 文件,用来保存数据
self.filename = open("sun3.json", "wb")
# process_item方法是必须写的,用来处理item数据
def process_item(self, item, spider):
text = json.dumps(dict(item), ensure_ascii = False) + ",\n"
# 把数据写入到sun3.json 文件中,编码为:utf-8
self.filename.write(text.encode("utf-8"))
return item
# close_spider方法是可选的,结束时调用这个方法
def close_spider(self, spider):
self.filename.close()
第七步:修改 settings 文件。
在settings.py文件配置里指定刚才编写的管道文件名:SunPipeline。
设置爬虫请求的默认头信息。
第八步:运行爬虫。
在 dos下切换到目录
D:\scrapy_project\dg_sun3\dg_sun 下
通过命令运行爬虫 :scrapy crawl sun
首先提取列表里的每个链接,发送请求,放到请求队列里,然后再爬取每个投诉的相关信息。
第九步:查看爬取的结果。
查看新建的 sun3.json 数据文件。
相关推荐
- ceph rbd块存储挂载及文件存储建立
-
cephrbd块存储挂载及文件存储建立一、rbd块存储挂载1创建一个OSDpool...
- odps sql中常用的时间处理方法
-
1、获取当前时间selectgetdate();2、获取昨天(字符串格式)selectto_char(dateadd(getdate(),-1,'dd'),'yyyymmd...
- 每天一个 Python 库:datetime 模块全攻略,时间操作太丝滑!
-
在日常开发中,时间处理是绕不开的一块,比如:...
- 时序异常检测工具:ADTK
-
1adtk简介智能运维AIOps的数据基本上都是...
- 又一批长事务,P0故障谁来背锅?
-
最近几周,发生过多起因为事务问题引起的服务报错。现象为...
- RoboSense雷达驱动时间戳分析
-
这是速腾最早的产品RS-16,目前的主流产品应该是M平台的固态激光雷达以及R平台的多线机械雷达,不过点云的解析的基本原理都是类似的。雷达点云的时间戳对多传感器同步、畸变矫正等有很大的帮助。下文以速腾R...
- HDFS回收站、Trash机制、Trash Checkpoint、快照功能使用
-
回收站的功能给了我们一剂“后悔药”。回收站保存了删除的文件、文件夹、图片、快捷方式等。这些项目将一直保留在回收站中,直到您清空回收站。我们许多无法删除的文件就是从它里面找到的。HDFS本身也是一个文件...
- 抖音品质建设 - iOS启动优化《实战篇》
-
前言启动是App给用户的第一印象,启动越慢,用户流失的概率就越高,良好的启动速度是用户体验不可缺少的一环。启动优化涉及到的知识点非常多,面也很广,一篇文章难以包含全部,所以拆分成两部分:原理和实战...
- 秒懂ClickHouse: 时间日期函数示例和用法
-
ClickHouses时间日期函数示例和用法,便于快速理解快速查询;...
- MySQL 中时间函数详解,及加减计算总结和使用!
-
1MySQL常见查询技巧查看MYSQL正在运行中的进程:showprocesslist;...
- 详细讲解HLS拉流源码分析(1)
-
1.HLS播放流程框架hls整个播放流程,读取数据部分,涉及到ffmpeg文件有,ffplay.c,utils.c,format.c,options.c,aviobuf.c,avio.c,hls.c,...
- MySQL时间格式化存VARCHAR:yyyyMMddHHmmss
-
声明本文中的案例仅供参考,如需使用请严格做好相关测试及评估,对于因参照本文内容进行操作而导致的任何直接或间接损失,作者概不负责。MySQL时间格式化存VARCHAR:yyyyMMddHHmmss...
- python进阶突破内置模块——日期与时间详解
-
Python提供了多个内置模块用于处理日期和时间,涵盖了从基础时间操作到时区管理的各种需求。以下是核心模块及其关键功能的详细说明:1.datetime模块...
- 掌握WAL日志管理:金仓数据库运维高手的必备技能
-
引言...
- 一周热门
-
-
C# 13 和 .NET 9 全知道 :13 使用 ASP.NET Core 构建网站 (1)
-
因果推断Matching方式实现代码 因果推断模型
-
git pull命令使用实例 git pull--rebase
-
面试官:git pull是哪两个指令的组合?
-
git fetch 和git pull 的异同 git中fetch和pull的区别
-
git 执行pull错误如何撤销 git pull fail
-
git pull 和git fetch 命令分别有什么作用?二者有什么区别?
-
git pull 之后本地代码被覆盖 解决方案
-
还可以这样玩?Git基本原理及各种骚操作,涨知识了
-
git命令之pull git.pull
-
- 最近发表
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)
- c语言 switch (34)
- git commit (34)