百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT技术 > 正文

python之多线程并发(python多线程并发执行)

wptr33 2025-05-11 01:43 2 浏览

前言

今天呢笔者想和大家来聊聊python多线程的并发,废话就不多说了咱们直接进入主题哟。

一、线程执行

python的内置模块提供了两个内置模块:thread和threading,thread是源生模块,threading是扩展模块,在thread的基础上进行了封装及改进。所以只需要使用threading这个模块就能完成并发的测试

实例

创建并启动一个单线程

import threading


def myTestFunc():
    print("我是一个函数")

t = threading.Thread(target=myTestFunc)  # 创建一个线程
t.start()  # 启动线程

执行结果

C:\Python36\python.exe D:/MyThreading/myThread.py
我是一个线程函数

Process finished with exit code 0

其实单线程的执行结果和单独执行某一个或者某一组函数结果是一样的,区别只在于用线程的方式执行函数,而线程是可以同时执行多个的,函数是不可以同时执行的。

二、多线程执行

上面介绍了单线程如何使用,多线程只需要通过循环创建多个线程,并循环启动线程执行就可以了

实例

import threading
from datetime import datetime


def thread_func():  # 线程函数
    print('我是一个线程函数', datetime.now())


def many_thread():
    threads = []
    for _ in range(10):  # 循环创建10个线程
        t = threading.Thread(target=thread_func)
        threads.append(t)
    for t in threads:  # 循环启动10个线程
        t.start()


if __name__ == '__main__':
    many_thread()

执行结果

C:\Python36\python.exe D:/MyThreading/manythread.py
我是一个线程函数 2022-06-23 16:54:58.205146
我是一个线程函数 2022-06-23 16:54:58.205146
我是一个线程函数 2022-06-23 16:54:58.206159
我是一个线程函数 2022-06-23 16:54:58.206159
我是一个线程函数 2022-06-23 16:54:58.206159
我是一个线程函数 2022-06-23 16:54:58.207139
我是一个线程函数 2022-06-23 16:54:58.207139
我是一个线程函数 2022-06-23 16:54:58.207139
我是一个线程函数 2022-06-23 16:54:58.208150
我是一个线程函数 2022-06-23 16:54:58.208150

Process finished with exit code 0

通过循环创建10个线程,并且执行了10次线程函数,但需要注意的是python的并发并非绝对意义上的同时处理,因为启动线程是通过循环启动的,还是有先后顺序的,通过执行结果的时间可以看出还是有细微的差异,但可以忽略不记。当然如果线程过多就会扩大这种差异。我们启动500个线程看下程序执行时间

实例

import threading
from datetime import datetime


def thread_func():  # 线程函数
    print('我是一个线程函数', datetime.now())


def many_thread():
    threads = []
    for _ in range(500):  # 循环创建500个线程
        t = threading.Thread(target=thread_func)
        threads.append(t)
    for t in threads:  # 循环启动500个线程
        t.start()


if __name__ == '__main__':
    start = datetime.today().now()
    many_thread()
    duration = datetime.today().now() - start
    print(duration)

执行结果

0:00:00.111657

Process finished with exit code 0

500个线程共执行了大约0.11秒

那么针对这种问题我们该如何优化呢?我们可以创建25个线程,每个线程执行20次线程函数,这样在启动下一个线程的时候,上一个线程已经在循环执行了,这样就大大减少了并发的时间差异

优化

import threading
from datetime import datetime


def thread_func():  # 线程函数
    print('我是一个线程函数', datetime.now())


def execute_func():
    for _ in range(20):
        thread_func()


def many_thread():
    start = datetime.now()
    threads = []
    for _ in range(25):  # 循环创建500个线程
        t = threading.Thread(target=execute_func)
        threads.append(t)
    for t in threads:  # 循环启动500个线程
        t.start()
    duration = datetime.now() - start
    print(duration)

if __name__ == '__main__':
    many_thread()

输出结果(仅看程序执行间隔)

0:00:00.014959

Process finished with exit code 0

后面的优化执行500次并发一共花了0.014秒。比未优化前的500个并发快了几倍,如果线程函数的执行时间比较长的话,那么这个差异会更加显著,所以大量的并发测试建议使用后者,后者比较接近同时“并发”

三、守护线程

多线程还有一个重要概念就是守护线程。那么在这之前我们需要知道主线程和子线程的区别,之前创建的线程其实都是main()线程的子线程,即先启动主线程main(),然后执行线程函数子线程。

那么什么是守护线程?即当主线程执行完毕之后,所有的子线程也被关闭(无论子线程是否执行完成)。默认不设置的情况下是没有守护线程的,主线程执行完毕后,会等待子线程全部执行完毕,才会关闭结束程序。

但是这样会有一个弊端,当子线程死循环了或者一直处于等待之中,则程序将不会被关闭,被被无限挂起,我们把上述的线程函数改成循环10次, 并睡眠2秒,这样效果会更明显

import threading
from datetime import datetime
import time


def thread_func():  # 线程函数
   time.sleep(2)
    i = 0
    while(i < 11):
        print(datetime.now())
        i += 1

def many_thread():
    threads = []
    for _ in range(10):  # 循环创建500个线程
        t = threading.Thread(target=thread_func)
        threads.append(t)
    for t in threads:  # 循环启动500个线程
        t.start()


if __name__ == '__main__':
    many_thread()
    print("thread end")

执行结果

C:\Python36\python.exe D:/MyThreading/manythread.py
thread end
2022-06-23 19:08:00.468612
2022-06-23 19:08:00.468612
2022-06-23 19:08:00.468612
2022-06-23 19:08:00.468612
2022-06-23 19:08:00.468612
2022-06-23 19:08:00.468612
2022-06-23 19:08:00.468612
2022-06-23 19:08:00.468612
2022-06-23 19:08:00.468612
2022-06-23 19:08:00.468612
2022-06-23 19:08:00.468612
2022-06-23 19:08:00.469559
2022-06-23 19:08:00.469559
2022-06-23 19:08:00.469559
2022-06-23 19:08:00.469559
2022-06-23 19:08:00.469559
2022-06-23 19:08:00.469559
2022-06-23 19:08:00.470556
2022-06-23 19:08:00.470556
2022-06-23 19:08:00.470556
2022-06-23 19:08:00.470556
2022-06-23 19:08:00.470556
2022-06-23 19:08:00.470556
2022-06-23 19:08:00.470556
2022-06-23 19:08:00.470556
2022-06-23 19:08:00.470556
2022-06-23 19:08:00.470556
2022-06-23 19:08:00.470556
2022-06-23 19:08:00.470556
2022-06-23 19:08:00.470556
2022-06-23 19:08:00.470556
2022-06-23 19:08:00.470556
2022-06-23 19:08:00.471554
2022-06-23 19:08:00.471554
2022-06-23 19:08:00.471554
2022-06-23 19:08:00.471554
2022-06-23 19:08:00.471554
2022-06-23 19:08:00.471554
2022-06-23 19:08:00.471554
2022-06-23 19:08:00.471554
2022-06-23 19:08:00.471554
2022-06-23 19:08:00.471554
2022-06-23 19:08:00.471554
2022-06-23 19:08:00.471554
2022-06-23 19:08:00.472557
2022-06-23 19:08:00.472557
2022-06-23 19:08:00.472557
2022-06-23 19:08:00.472557
2022-06-23 19:08:00.472557
2022-06-23 19:08:00.472557
2022-06-23 19:08:00.472557
2022-06-23 19:08:00.472557
2022-06-23 19:08:00.472557
2022-06-23 19:08:00.472557
2022-06-23 19:08:00.472557
2022-06-23 19:08:00.472557
2022-06-23 19:08:00.472557
2022-06-23 19:08:00.472557
2022-06-23 19:08:00.472557
2022-06-23 19:08:00.473548
2022-06-23 19:08:00.473548
2022-06-23 19:08:00.473548
2022-06-23 19:08:00.473548
2022-06-23 19:08:00.473548
2022-06-23 19:08:00.473548
2022-06-23 19:08:00.473548
2022-06-23 19:08:00.473548
2022-06-23 19:08:00.473548
2022-06-23 19:08:00.473548
2022-06-23 19:08:00.473548
2022-06-23 19:08:00.473548
2022-06-23 19:08:00.473548
2022-06-23 19:08:00.474545
2022-06-23 19:08:00.474545
2022-06-23 19:08:00.474545
2022-06-23 19:08:00.474545
2022-06-23 19:08:00.474545
2022-06-23 19:08:00.474545
2022-06-23 19:08:00.474545
2022-06-23 19:08:00.475552
2022-06-23 19:08:00.475552
2022-06-23 19:08:00.475552
2022-06-23 19:08:00.475552
2022-06-23 19:08:00.475552
2022-06-23 19:08:00.475552
2022-06-23 19:08:00.475552
2022-06-23 19:08:00.475552
2022-06-23 19:08:00.475552
2022-06-23 19:08:00.476548
2022-06-23 19:08:00.476548
2022-06-23 19:08:00.476548
2022-06-23 19:08:00.476548
2022-06-23 19:08:00.476548
2022-06-23 19:08:00.476548
2022-06-23 19:08:00.476548
2022-06-23 19:08:00.476548
2022-06-23 19:08:00.476548
2022-06-23 19:08:00.476548
2022-06-23 19:08:00.477546
2022-06-23 19:08:00.477546
2022-06-23 19:08:00.477546
2022-06-23 19:08:00.477546
2022-06-23 19:08:00.477546
2022-06-23 19:08:00.477546
2022-06-23 19:08:00.477546
2022-06-23 19:08:00.477546
2022-06-23 19:08:00.477546
2022-06-23 19:08:00.477546
2022-06-23 19:08:00.477546
2022-06-23 19:08:00.477546

Process finished with exit code 0

根据上述结果可以看到主线程打印了“thread end”之后(主线程结束),子线程还在继续执行,并未随着主线程的结束而结束

下面我们通过 setDaemon方法给子线程添加守护线程,我们把循环改为死循环,再来看看输出结果(注意守护线程要加在start之前)

import threading
from datetime import datetime
def thread_func():  # 线程函数
    i = 0
    while(1):
        print(datetime.now())
        i += 1

def many_thread():
    threads = []
    for _ in range(10):  # 循环创建500个线程
        t = threading.Thread(target=thread_func)
        threads.append(t)
        t.setDaemon(True)  # 给每个子线程添加守护线程
    for t in threads:  # 循环启动500个线程
        t.start()


if __name__ == '__main__':
    many_thread()
    print("thread end")

输出结果

2022-06-23 19:12:35.564539
2022-06-23 19:12:35.564539
2022-06-23 19:12:35.564539
2022-06-23 19:12:35.564539
2022-06-23 19:12:35.564539
2022-06-23 19:12:35.564539
2022-06-23 19:12:35.565529
2022-06-23 19:12:35.565529
2022-06-23 19:12:35.565529
thread end

Process finished with exit code 0

通过结果我们可以发现,主线程关闭之后子线程也会随着关闭,并没有无限的循环下去,这就像程序执行到一半强制关闭执行一样,看似暴力却很有用,如果子线程发送一个请求未收到请求结果,那不可能永远等下去,这时候就需要强制关闭。所以守护线程解决了主线程和子线程关闭的问题。

四、阻塞线程

上面说了守护线程的作用,那么有没有别的方法来解决上述问题呢? 其实是有的,那就是阻塞线程,这种方式更加合理,使用join()方法阻塞线程,让主线程等待子线程执行完成之后再往下执行,再关闭所有子线程,而不是只要主线程结束,不管子线程是否执行完成都终止子线程执行。下面我们给子线程添加上join()(主要join要加到start之后)

import threading
from datetime import datetime
import time


def thread_func():  # 线程函数
    time.sleep(1)
    i = 0
    while(i < 11):
        print(datetime.now())
        i += 1

def many_thread():
    threads = []
    for _ in range(10):  # 循环创建500个线程
        t = threading.Thread(target=thread_func)
        threads.append(t)
        t.setDaemon(True)  # 给每个子线程添加守护线程
    for t in threads:  # 循环启动500个线程
        t.start()
    for t in threads:
        t.join()  # 阻塞线程

if __name__ == '__main__':
    many_thread()
    print("thread end")

执行结果

程序会一直执行,但是不会打印“thread end”语句,因为子线程并未结束,那么主线程就会一直等待。

疑问:有人会觉得这和什么都不设置是一样的,其实会有一点区别的,从守护线程和线程阻塞的定义就可以看出来,如果什么都没设置,那么主线程会先执行完毕打印后面的“thread end”,而等待子线程执行完毕。两个都设置了,那么主线程会等待子线程执行结束再继续执行。

而对于死循环或者一直等待的情况,我们可以给join设置超时等待,我们设置join的参数为2,那么子线程会告诉主线程让其等待2秒,如果2秒内子线程执行结束主线程就继续往下执行,如果2秒内子线程未结束,主线程也会继续往下执行,执行完成后关闭子线程

import threading
from datetime import datetime
import time


def thread_func():  # 线程函数
    time.sleep(1)
    i = 0
    while(1):
        print(datetime.now())
        i += 1

def many_thread():
    threads = []
    for _ in range(10):  # 循环创建500个线程
        t = threading.Thread(target=thread_func)
        threads.append(t)
        t.setDaemon(True)  # 给每个子线程添加守护线程
    for t in threads:  # 循环启动500个线程
        t.start()
    for t in threads:
        t.join(2)  # 设置子线程超时2秒

if __name__ == '__main__':
    many_thread()
    print("thread end")

输出结果

你运行程序后会发现,运行了大概2秒的时候,程序会数据“thread end” 然后结束程序执行, 这就是阻塞线程的意义,控制子线程和主线程的执行顺序

总结

最好呢,再次说一下守护线程和阻塞线程的定义

守护线程:子线程会随着主线程的结束而结束,无论子线程是否执行完毕

阻塞线程:主线程会等待子线程的执行结束,才继续执行

最后今天的文章就到这里了哟,喜欢的小伙伴可以点赞收藏评论关注哟。

相关推荐

如果手机显示无SIM卡,到底是什么意思呢?

一般手机显示无可用SIM卡,可能是如下原因造成的,大家可以了解下,并且进行解决。第一个,SIM卡未正确插入:我们需要检查SIM卡是否已正确插入手机。如果SIM卡没有完全插入,或者插反了,手机可能会显...

赶紧设置!工信部提醒设置手机SIM卡密码

【赶紧设置!工信部提醒设置手机SIM卡密码】平安法治2020近日,针对网友反映的手机失窃导致信息泄露事件,国家工信部立即组织核查处理,要求电信企业加强安全防护,并提醒手机用户设置SIM卡密码。...

手机突然显示无SIM卡?这样做就能恢复~

大家有没经历过明明SIM卡在卡槽里放得好好的,手机却突然显示无SIM卡的状况?没有了SIM卡手机就失去了灵魂,打电话、上网的功能都不能用了。这到底是怎么一回事儿?让小翼帮你来解答~什么是SIM卡?SI...

SK电讯首尔门店遭“围攻”,SIM卡更换服务陷混乱

据yna.co.kr网4月28日报道,28日,韩国SK电讯推出免费SIM卡更换服务以应对网络安全风险,首尔光化门店门前清晨8点便已排起长队。原定于上午10点开始的服务因企业员工需求激增,提前至9点启动...

Spring新闻汇总:Framework、Data、Security、Integration和Modulith发布里程碑版本

...

Springboot特性、快速创建SpringBoot应用、Starter简介

SpringBoot基础本章我们将揭开SpringBoot的神秘面纱。...

Springboot2的熔断、限流和降级讲解

高可用的三大利器是熔断、限流和降级。它们都是在分布式系统中用于保障系统稳定性和可用性的重要策略。熔断(CircuitBreaker):熔断是一种防止故障扩散的机制。当一个服务出现故障或超时,熔断器会...

Spring Cloud 全面解析:分布式系统开发的魔法工具包

SpringCloud全面解析:分布式系统开发的魔法工具包SpringCloud是Java开发者构建分布式系统的得力助手。它基于SpringBoot,为开发者提供了强大的微服务架构支持...

真香!GitHub开源SpringCloud Alibaba全解(全彩版)先到先得!

SpringCloudAliababa简介SpringCloudAlibaba是阿里巴巴集团开源的一套微服务架构解决方案。...

聊聊langchain4j-spring的1.0.0-beta版本的更新

序本文主要研究一下langchain4j-spring的1.0.0-beta版本的更新1.0.0-beta1...

Java异步编程(5种异步实现方式详解)

Java面试经常会问到:异步操作?什么是异步?与同步有什么区别?Java异步的是如何实现?有哪些异步实现方式?下面我一一来详解异步@mikechen什么是异步?...

全部开源的快速开发平台-开源字节

《硕宇精选》专注于探索、发现、分享开源技术应用和优质开源项目。本期推荐的优质项目是开源字节是一套全部开源的快速开发平台,毫无保留给个人及企业免费使用。该平台基于SpringBoot+MyBat...

Trip.com launches 700 products in 15 countries

OnlinetravelagencyTrip.comhasofferedmorethan700newoverseasproducts,visiting15countries...

Spring事务

使用Spring事务Spring事务介绍Spring事务的特点:1.多种事务API,Spring事务都可兼容;2.程序接入简单;3.与已有的Spring框架集成。...

牛刀小试——五分钟入门Spring Boot

万物皆可HelloWorld在一个程序员的眼里,万物皆可HelloWorld。SpringBoot当然也不例外。下面一起来完成我们的第一个SpringBoot程序。...