Python列表、元组、字典和集合_python 元组 列表 字典
wptr33 2025-09-29 13:40 46 浏览
Python 中的列表(List)、元组(Tuple)、字典(Dict)和集合(Set)是四种最常用的核心数据结构。掌握它们的基础操作只是第一步,真正发挥威力的是那些高级用法和技巧。
首先我们先看一下这4种类型的详细对比,确定我们在开发的时候怎么选择使用哪一种类型。
数据结构 | 是否可变 | 是否有序 | 元素是否唯一 | 查找效率 | 内存结构 | 典型应用 |
列表 (List) | 可变 | 有序 | 允许重复 | O(n) | 动态指针数组 | 动态有序数据 |
元组 (Tuple) | 不可变 | 有序 | 允许重复 | O(n) | 静态指针数组 | 不变数据,作字典键 |
字典 (Dict) | 可变 | 插入序 | Key唯一 | O(1) | 哈希表 | 键值映射,快速查找 |
集合 (Set) | 可变 | 无序 | 元素唯一 | O(1) | 哈希表(仅键) | 去重,集合运算 |
总结与选择建议:
- 需要存储一个有序且可能变化的序列吗? -> 选择 列表。
- 需要存储一组不可变的、作为键或保证安全的数据吗? -> 选择 元组。
- 需要通过唯一的键来快速查找和关联值吗? -> 选择 字典。
- 需要保证元素的唯一性,或进行集合运算(如去重、求交集并集)吗? -> 选择 集合。
列表 (List) 的高级用法
列表的强大远超基础的增删改查。
- 列表推导式 (List Comprehension)。
这是编写 Pythonic 代码的利器,它用简洁的语法快速生成新列表
# 基础:快速生成平方数列表
squares = [x**2 for x in range(10)]# [0, 1, 4, 9, ..., 81]
# 带条件过滤:生成偶数的平方
even_squares = [x**2 for x in range(10) if x % 2 == 0]# [0, 4, 16, 36, 64]
# 多重循环:模拟嵌套循环,生成全排列
pairs = [(x, y) for x in ['A', 'B'] for y in [1, 2]]
# 结果: [('A', 1), ('A', 2), ('B', 1), ('B', 2)]- 切片赋值与高级切片。
切片不仅可以取数据,还可以批量修改、删除甚至插入数据
my_list = [1, 2, 3, 4, 5]
# 批量替换子序列 my_list[1:4] = [20, 30, 40]# my_list 变为 [1, 20, 30, 40, 5]
# 批量删除子序列 (用空列表替换) my_list[1:4] = []# my_list 变为 [1, 5]
# 使用步长进行间隔替换(数量必须匹配) my_list[::2] = [100, 200]# 将第1、3个元素替换为100, 200- 与 map, filter, zip等函数式工具结合
这些内置函数让列表处理更高效和声明式。
numbers = ['1', '2', '3']
# map: 将函数应用于列表每个元素 int_list = list(map(int, numbers)) # [1, 2, 3]
# filter: 过滤列表中满足条件的元素 even_list = list(filter(lambda x: x % 2 == 0, [1,2,3,4])) # [2, 4]
# zip: 将多个列表对应位置的元素"打包"成元组
names = ['Alice', 'Bob']
scores = [85, 92]
zipped = list(zip(names, scores)) # [('Alice', 85), ('Bob', 92)]
# 用zip优雅地同步遍历多个列表
for name, score in zip(names, scores):
print(f"{name}: {score}")- 性能注意事项
- 列表在尾部进行 append和 pop操作很快(O(1)时间复杂度)。
- 在头部或中部进行 insert或 pop操作可能较慢(O(n)时间复杂度),因为需要移动后续元素。
- 对于需要频繁在两端进行添加或删除操作的场景,可以考虑使用 collections.deque(双端队列),它在队列两端都有出色的性能表现。
元组 (Tuple) 的高级用法
元组的“不可变性”是其核心优势,带来了安全、高效和可哈希的特性。
- 解包 (Unpacking)。
这是元组最优雅的特性之一,可以一次性将元组元素赋值给多个变量
# 基本解包
point = (10, 20)
x, y = point# x=10, y=20
# 使用 * 进行可变长度解包 (Python 3)
numbers = (1, 2, 3, 4, 5)
first, *middle, last = numbers# first=1, middle=[2,3,4], last=5
a, *b, c, d = numbers# a=1, b=[2,3], c=4, d=5
# 在循环中解包
for name, score in zipped:# 接上文zip的例子
print(f"{name}'s score is {score}")
# 使用下划线 _ 忽略不需要的值
name, _, salary = ("Alice", "Engineer", 50000) # 忽略职位- 作为字典的键或集合的元素。
由于元组是不可变的、可哈希的,它可以作为字典的键,这是列表无法做到的
# 用元组表示坐标,作为字典的键
location_map = {
(40.7128, -74.0060): "New York",
(34.0522, -118.2437): "Los Angeles"
}
print(location_map[(40.7128, -74.0060)])# 输出: New York
# 元组也可以放入集合中(需确保所有元素都可哈希)
unique_points = {(1, 2), (3, 4), (1, 2)} # {(1, 2), (3, 4)}- 命名元组 (Named Tuple)。
collections.namedtuple让元组不仅有序号,还有了名字,极大提升了代码的可读性
from collections import namedtuple
# 定义一个命名元组类型 'Person'
Person = namedtuple('Person', ['name', 'age', 'job'])
# 创建命名元组实例
alice = Person(name="Alice", age=30, job="Engineer")
# 通过字段名访问,意义明确
print(alice.name) # Alice
print(alice.job) # Engineer
# 仍然支持索引访问
print(alice[0]) # Alice- 函数返回多个值。
本质上,Python 函数返回多个值就是返回一个元组
def calculate_stats(data):
total = sum(data)
count = len(data)
average = total / count return total, count, average # 返回一个元组 (total, count, average)
# 接收返回值时常用解包
total, count, avg = calculate_stats([1, 2, 3, 4, 5])字典 (Dict) 的高级用法
字典的核心在于基于键的快速查找(O(1)平均时间复杂度)。
- 字典推导式 (Dict Comprehension)。
与列表推导式类似,可以快速简洁地创建字典
# 快速创建键值对
squares = {x: x*x for x in range(5)}# {0: 0, 1: 1, 2: 4, 3: 9, 4: 16}
# 交换键和值(前提是值都是可哈希的)
original = {'a': 1, 'b': 2}
swapped = {v: k for k, v in original.items()}# {1: 'a', 2: 'b'}
# 带条件的推导式
even_squares = {x: x*x for x in range(10) if x % 2 == 0}- setdefault和 get方法安全访问
这些方法可以优雅地处理键可能不存在的情况,避免 KeyError。
my_dict = {'name': 'Alice', 'age': 30}
# get(key, default): 键不存在时返回默认值,不会引发异常
job = my_dict.get('job', 'Unemployed')# 'Unemployed'
age = my_dict.get('age')# 30
# setdefault(key, default): 键不存在时,设置键值并返回默认值;键存在则返回对应的值
# 常用于初始化列表、集合等值,避免重复判断
data = {}
for item in ['A', 'B', 'A', 'C']:
# 如果键不存在,将键对应的值初始化为空列表,然后追加元素
data.setdefault(item, []).append(f"Value_{item}")
# data: {'A': ['Value_A', 'Value_A'], 'B': ['Value_B'], 'C': ['Value_C']}- 字典合并 (Merging Dictionaries)
有多种方式可以将多个字典合并为一个。
d1 = {'a': 1, 'b': 2}
d2 = {'b': 3, 'c': 4} # 注意键 'b' 重复
# 方法1: {**d1, **d2} (Python 3.5+)
merged = {**d1, **d2} # {'a': 1, 'b': 3, 'c': 4},后面的值覆盖前面的
# 方法2: d1.update(d2) (原地修改d1)
d1.update(d2) # d1 变为 {'a': 1, 'b': 3, 'c': 4}
# 方法3: collections.ChainMap (逻辑合并,不创建新字典)
from collections import ChainMap
chain = ChainMap(d1, d2) # 按顺序查找键- 使用 collections模块中的特殊字典
defaultdict: 提供默认值工厂,简化初始化。
from collections import defaultdict
# 初始化一个默认值为列表的字典 list_dict = defaultdict(list)
list_dict['fruits'].append('apple')# 无需先判断键是否存在
# 初始化一个默认值为0的字典(用于计数)
count_dict = defaultdict(int)
for word in ['apple', 'banana', 'apple']:
count_dict[word] += 1# 第一次遇到'apple'时,初始值就是0
# count_dict: defaultdict(<class 'int'>, {'apple': 2, 'banana': 1})- Counter: 专为计数设计的字典子类。
from collections import Counter
words = ['apple', 'banana', 'apple', 'orange', 'banana', 'apple']
word_count = Counter(words)
print(word_count) # Counter({'apple': 3, 'banana': 2, 'orange': 1})
print(word_count.most_common(2)) # [('apple', 3), ('banana', 2)]集合 (Set) 的高级用法
集合的核心是唯一性和数学集合操作。
- 集合推导式 (Set Comprehension)
与列表推导式类似,用于创建集合,自动去重。
# 创建一个包含平方数的集合(自动去重)
numbers = [1, 2, 2, 3, 4, 4, 4]
unique_squares = {x*x for x in numbers} # {1, 4, 9, 16}- 强大的集合运算
集合支持并集、交集、差集、对称差集等数学运算。
set_a = {1, 2, 3, 4}
set_b = {3, 4, 5, 6}
# 并集 (Union): 所有在A或B中的元素
print(set_a | set_b)# {1, 2, 3, 4, 5, 6}
print(set_a.union(set_b))# 同上
# 交集 (Intersection): 所有同时在A和B中的元素
print(set_a & set_b)# {3, 4}
print(set_a.intersection(set_b))# 同上
# 差集 (Difference): 在A中但不在B中的元素
print(set_a - set_b)# {1, 2}
print(set_a.difference(set_b))# 同上
# 对称差集 (Symmetric Difference): 在A或B中,但不同时在两者中的元素
print(set_a ^ set_b)# {1, 2, 5, 6}
print(set_a.symmetric_difference(set_b))# 同上
# 子集/超集判断
print({1, 2}.issubset(set_a)) # True
print(set_a.issuperset({1, 2})) # True- 从序列中快速去除重复项
这是集合最常用的场景之一。
my_list = [1, 2, 2, 3, 4, 4, 4, 5]
unique_list = list(set(my_list)) # [1, 2, 3, 4, 5] (顺序可能改变)
# 如果需要保持原始顺序,可以使用字典(Python 3.7+字典有序)
unique_list_ordered = list(dict.fromkeys(my_list).keys()) # [1, 2, 3, 4, 5]相关推荐
- oracle数据导入导出_oracle数据导入导出工具
-
关于oracle的数据导入导出,这个功能的使用场景,一般是换服务环境,把原先的oracle数据导入到另外一台oracle数据库,或者导出备份使用。只不过oracle的导入导出命令不好记忆,稍稍有点复杂...
- 继续学习Python中的while true/break语句
-
上次讲到if语句的用法,大家在微信公众号问了小编很多问题,那么小编在这几种解决一下,1.else和elif是子模块,不能单独使用2.一个if语句中可以包括很多个elif语句,但结尾只能有一个else解...
- python continue和break的区别_python中break语句和continue语句的区别
-
python中循环语句经常会使用continue和break,那么这2者的区别是?continue是跳出本次循环,进行下一次循环;break是跳出整个循环;例如:...
- 简单学Python——关键字6——break和continue
-
Python退出循环,有break语句和continue语句两种实现方式。break语句和continue语句的区别:break语句作用是终止循环。continue语句作用是跳出本轮循环,继续下一次循...
- 2-1,0基础学Python之 break退出循环、 continue继续循环 多重循
-
用for循环或者while循环时,如果要在循环体内直接退出循环,可以使用break语句。比如计算1至100的整数和,我们用while来实现:sum=0x=1whileTrue...
- Python 中 break 和 continue 傻傻分不清
-
大家好啊,我是大田。今天分享一下break和continue在代码中的执行效果是什么,进一步区分出二者的区别。一、continue例1:当小明3岁时不打印年龄,其余年龄正常循环打印。可以看...
- python中的流程控制语句:continue、break 和 return使用方法
-
Python中,continue、break和return是控制流程的关键语句,用于在循环或函数中提前退出或跳过某些操作。它们的用途和区别如下:1.continue(跳过当前循环的剩余部分,进...
- L017:continue和break - 教程文案
-
continue和break在Python中,continue和break是用于控制循环(如for和while)执行流程的关键字,它们的作用如下:1.continue:跳过当前迭代,...
- 作为前端开发者,你都经历过怎样的面试?
-
已经裸辞1个月了,最近开始投简历找工作,遇到各种各样的面试,今天分享一下。其实在职的时候也做过面试官,面试官时,感觉自己问的问题很难区分候选人的能力,最好的办法就是看看候选人的github上的代码仓库...
- 面试被问 const 是否不可变?这样回答才显功底
-
作为前端开发者,我在学习ES6特性时,总被const的"善变"搞得一头雾水——为什么用const声明的数组还能push元素?为什么基本类型赋值就会报错?直到翻遍MDN文档、对着内存图反...
- 2023金九银十必看前端面试题!2w字精品!
-
导文2023金九银十必看前端面试题!金九银十黄金期来了想要跳槽的小伙伴快来看啊CSS1.请解释CSS的盒模型是什么,并描述其组成部分。答案:CSS的盒模型是用于布局和定位元素的概念。它由内容区域...
- 前端面试总结_前端面试题整理
-
记得当时大二的时候,看到实验室的学长学姐忙于各种春招,有些收获了大厂offer,有些还在苦苦面试,其实那时候的心里还蛮忐忑的,不知道自己大三的时候会是什么样的一个水平,所以从19年的寒假放完,大二下学...
- 由浅入深,66条JavaScript面试知识点(七)
-
作者:JakeZhang转发链接:https://juejin.im/post/5ef8377f6fb9a07e693a6061目录由浅入深,66条JavaScript面试知识点(一)由浅入深,66...
- 2024前端面试真题之—VUE篇_前端面试题vue2020及答案
-
添加图片注释,不超过140字(可选)1.vue的生命周期有哪些及每个生命周期做了什么?beforeCreate是newVue()之后触发的第一个钩子,在当前阶段data、methods、com...
- 今年最常见的前端面试题,你会做几道?
-
在面试或招聘前端开发人员时,期望、现实和需求之间总是存在着巨大差距。面试其实是一个交流想法的地方,挑战人们的思考方式,并客观地分析给定的问题。可以通过面试了解人们如何做出决策,了解一个人对技术和解决问...
- 一周热门
- 最近发表
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)
- c语言 switch (34)
- git commit (34)
