FlinkSQL自定义 redis connector flinksql自定义sink
wptr33 2024-12-17 16:47 47 浏览
导读:一般情况下,我们不需要创建新的 connector,因为 Flink SQL 已经内置了丰富的 connector 供我们使用,但是在实际生产环境中我们的存储是多种多样的,所以原生的 connector 并不能满足所有用户的需求,这个时候就需要我们自定义 connector,这篇文章的重点就是介绍一下如何实现自定义 Flink SQL connector
先来看一下官网的一张 connector 架构图:
Metadata
Table API 和 SQL 都是声明式 API。这包括表的声明。因此,执行 CREATE TABLE 语句会导致目标目录中的元数据更新。对于大多数目录实现,不会为此类操作修改外部系统中的物理数据。特定于连接器的依赖项不必出现在类路径中。WITH 子句中声明的选项既不经过验证也不以其他方式解释。动态表的元数据(通过 DDL 创建或由目录提供)表示为 CatalogTable 的实例。必要时,表名将在内部解析为 CatalogTable。
Planning
在规划和优化表程序时,需要将 CatalogTable 解析为 DynamicTableSource(用于在 SELECT 查询中读取)和 DynamicTableSink(用于在 INSERT INTO 语句中写入)。
DynamicTableSourceFactory 和 DynamicTableSinkFactory 提供特定于连接器的逻辑,用于将 CatalogTable 的元数据转换为 DynamicTableSource 和 DynamicTableSink 的实例。在大多数情况下,工厂的目的是验证选项(例如示例中的 'port' = '5022')、配置编码/解码格式(如果需要)以及创建表连接器的参数化实例。
默认情况下,使用 Java 的服务提供者接口 (SPI) 发现 DynamicTableSourceFactory 和 DynamicTableSinkFactory 的实例。连接器选项(例如示例中的 'connector' = 'custom')必须对应于有效的工厂标识符。
尽管在类命名中可能不明显,但 DynamicTableSource 和 DynamicTableSink 也可以被视为有状态的工厂,它们最终为读取/写入实际数据生成具体的运行时实现。
规划器使用源和接收器实例来执行特定于连接器的双向通信,直到找到最佳逻辑计划。根据可选声明的能力接口(例如 SupportsProjectionPushDown 或 SupportsOverwrite),规划器可能会对实例应用更改,从而改变生成的运行时实现。
Runtime
一旦逻辑规划完成,规划器将从表连接器获取运行时实现。运行时逻辑在 Flink 的核心连接器接口中实现,例如 InputFormat 或 SourceFunction。
这些接口按另一个抽象级别分组为 ScanRuntimeProvider、LookupRuntimeProvider 和 SinkRuntimeProvider 的子类。
例如,OutputFormatProvider(提供 org.apache.flink.api.common.io.OutputFormat)和 SinkFunctionProvider(提供 org.apache.flink.streaming.api.functions.sink.SinkFunction)都是 SinkRuntimeProvider 的具体实例,规划器可以 处理。
自定义 redis sink connector
大概需要下面 4 个过程:
- 自定义 Factory,根据需要实现 DynamicTableSourceFactory, DynamicTableSinkFactory.
- 自定义 TableSink, 实现 DynamicTableSink
- 定义 Options 也就是 connector 相关的属性
- 在 resource 下面添加配置文件 org.apache.flink.table.factories.Factory 里面添加 Factory 的全限定名
Factory
package flink.connector.redis;
import org.apache.flink.configuration.ConfigOption;
import org.apache.flink.configuration.ReadableConfig;
import org.apache.flink.table.connector.sink.DynamicTableSink;
import org.apache.flink.table.connector.source.DynamicTableSource;
import org.apache.flink.table.factories.DynamicTableSinkFactory;
import org.apache.flink.table.factories.DynamicTableSourceFactory;
import org.apache.flink.table.factories.FactoryUtil;
import java.util.HashSet;
import java.util.Set;
/**
* 自定义 Factory
**/
public class RedisDynamicTableFactory implements DynamicTableSourceFactory, DynamicTableSinkFactory {
@Override
public DynamicTableSink createDynamicTableSink(Context context) {
final FactoryUtil.TableFactoryHelper helper = FactoryUtil.createTableFactoryHelper(this, context);
helper.validate();
ReadableConfig options = helper.getOptions();
return new RedisDynamicTableSink(options);
}
/**
* 这里没有实现 source
* @param context
* @return
*/
@Override
public DynamicTableSource createDynamicTableSource(Context context) {
return null;
}
@Override
public String factoryIdentifier() {
return "redis";
}
@Override
public Set<ConfigOption<?>> requiredOptions() {
final Set<ConfigOption<?>> options = new HashSet();
options.add(RedisOptions.HOST);
options.add(RedisOptions.PORT);
return options;
}
@Override
public Set<ConfigOption<?>> optionalOptions() {
final Set<ConfigOption<?>> options = new HashSet();
options.add(RedisOptions.EXPIRE);
return options;
}
}TableSink
package flink.connector.redis;
import org.apache.flink.configuration.ReadableConfig;
import org.apache.flink.table.connector.ChangelogMode;
import org.apache.flink.table.connector.sink.DynamicTableSink;
import org.apache.flink.table.connector.sink.SinkFunctionProvider;
import org.apache.flink.types.RowKind;
import static flink.connector.redis.RedisOptions.*;
/**
* 自定义 DynamicTableSink
**/
public class RedisDynamicTableSink implements DynamicTableSink {
private ReadableConfig options;
public RedisDynamicTableSink(ReadableConfig options) {
this.options = options;
}
@Override
public ChangelogMode getChangelogMode(ChangelogMode requestedMode) {
return ChangelogMode.newBuilder()
.addContainedKind(RowKind.INSERT)
.addContainedKind(RowKind.UPDATE_BEFORE)
.addContainedKind(RowKind.UPDATE_AFTER)
.build();
}
@Override
public SinkRuntimeProvider getSinkRuntimeProvider(Context context) {
// 获取 redis 的 host 和 port
String host = options.getOptional(HOST).get();
Integer port = options.getOptional(PORT).get();
Integer expire = options.getOptional(EXPIRE).get();
MyRedisSink myRedisSink = new MyRedisSink(host, port, expire);
return SinkFunctionProvider.of(myRedisSink);
}
@Override
public DynamicTableSink copy() {
return new RedisDynamicTableSink(this.options);
}
@Override
public String asSummaryString() {
return "redis table sink";
}
}package flink.connector.redis;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import org.apache.flink.table.data.RowData;
import redis.clients.jedis.Jedis;
/**
* 自定义 sink 写入 redis
**/
public class MyRedisSink extends RichSinkFunction<RowData> {
private final String host;
private final int port;
private int expire;
private Jedis jedis;
public MyRedisSink(String host, int port, int expire) {
this.host = host;
this.port = port;
this.expire = expire;
}
@Override
public void open(Configuration parameters) throws Exception {
this.jedis = new Jedis(host, port);
}
@Override
public void invoke(RowData value, Context context) throws Exception {
this.jedis.set(String.valueOf(value.getString(0)), String.valueOf(value.getInt(1)), "NX", "EX", expire);
}
@Override
public void close() throws Exception {
this.jedis.close();
}
}这里用的是 Jedis 没有使用 Flink 自带的 redis connector ,因为 Flink 自带的功能有限,很多功能都需要自己扩展,所以就直接使用 Jedis.我这里只是为了演示,只实现了最简单的 set 功能.
Options
package flink.connector.redis;
import org.apache.flink.configuration.ConfigOption;
import org.apache.flink.configuration.ConfigOptions;
/**
* Option utils for redis table source sink.
*/
public class RedisOptions {
private RedisOptions() {}
public static final ConfigOption<String> HOST =
ConfigOptions.key("host")
.stringType()
.noDefaultValue()
.withDescription(
"The Redis table host.");
public static final ConfigOption<Integer> PORT =
ConfigOptions.key("port")
.intType()
.defaultValue(6379)
.withDescription(
"The Redis table port.");
public static final ConfigOption<Integer> EXPIRE =
ConfigOptions.key("expire")
.intType()
.noDefaultValue()
.withDescription(
"The Redis table expire time.");
}所有 redis 相关的属性都可以在这里添加,比如用户名密码,连接池相关的配置等.
配置文件
最后也是最重要的一点就是在 resource 下面添加配置文件,因为 Flink 是通过 SPI 机制来发现工厂的,注意这个路径一定不要写错. 详解 SPI 机制——ServiceLoader.load
使用&测试
到这里基本就完成了,下面来测试一下自定义的 connector 能否把数据准确的写入到 redis 里面.
// 定义数据源表
tEnv.executeSql("""
|CREATE TABLE datagen (
| f_sequence INT,
| f_random INT,
| f_random_str STRING,
| ts AS localtimestamp,
| WATERMARK FOR ts AS ts
|) WITH (
| 'connector' = 'datagen',
| -- optional options --
| 'rows-per-second'='1',
| 'fields.f_sequence.kind'='sequence',
| 'fields.f_sequence.start'='1',
| 'fields.f_sequence.end'='20',
| 'fields.f_random.min'='1',
| 'fields.f_random.max'='1000',
| 'fields.f_random_str.length'='10'
|)
|""".stripMargin)
// 定义 redis 表
tEnv.executeSql(
"""
|create table redis_sink (
|f1 STRING,
|f2 INT
|) WITH (
|'connector' = 'redis',
|'host' = 'xxx',
|'port' = '6379',
|'expire' = '100'
|)
|""".stripMargin)
// 执行插入 SQL
tEnv.executeSql(
"""
|insert into redis_sink
|select f_random_str,f_random
|from datagen
|""".stripMargin)上面的 datagen 会产生 20 条数据.执行上面的 SQL 然后查询一下 redis 打印的数据如下:
68652c3a52 : 396
de3044d6d0 : 248
b09690ec10 : 436
dab4bb9ea9 : 821
d57a47d883 : 134
4d3d23767a : 63
9ca712a25f : 527
cb3019326d : 164
4a4af63f89 : 803
3cb960dbf1 : 575
db95bf7590 : 500
4274665b4b : 910
5c27396cb1 : 993
c1d957a2c8 : 951
8b24d7abe2 : 66
817b59d742 : 354
baa51bb58a : 14
db32f9cd53 : 510
3c5db2220b : 44
7c169eaef9 : 160通过上面的 Demo,相信大家对自定义 Flink SQL connector 已经有所了解,那在生产环境中就可以根据自己的需求去定制各种 connector 了.
最后
感谢您的阅读,如果喜欢本文欢迎关注和转发,转载需注明出处,本头条号将坚持持续分享IT技术知识。对于文章内容有其他想法或意见建议等,欢迎提出共同讨论共同进步。
原文地址:https://mp.weixin.qq.com/s/-h7fZxULS5cz2ZMgEEAncw
相关推荐
- oracle数据导入导出_oracle数据导入导出工具
-
关于oracle的数据导入导出,这个功能的使用场景,一般是换服务环境,把原先的oracle数据导入到另外一台oracle数据库,或者导出备份使用。只不过oracle的导入导出命令不好记忆,稍稍有点复杂...
- 继续学习Python中的while true/break语句
-
上次讲到if语句的用法,大家在微信公众号问了小编很多问题,那么小编在这几种解决一下,1.else和elif是子模块,不能单独使用2.一个if语句中可以包括很多个elif语句,但结尾只能有一个else解...
- python continue和break的区别_python中break语句和continue语句的区别
-
python中循环语句经常会使用continue和break,那么这2者的区别是?continue是跳出本次循环,进行下一次循环;break是跳出整个循环;例如:...
- 简单学Python——关键字6——break和continue
-
Python退出循环,有break语句和continue语句两种实现方式。break语句和continue语句的区别:break语句作用是终止循环。continue语句作用是跳出本轮循环,继续下一次循...
- 2-1,0基础学Python之 break退出循环、 continue继续循环 多重循
-
用for循环或者while循环时,如果要在循环体内直接退出循环,可以使用break语句。比如计算1至100的整数和,我们用while来实现:sum=0x=1whileTrue...
- Python 中 break 和 continue 傻傻分不清
-
大家好啊,我是大田。今天分享一下break和continue在代码中的执行效果是什么,进一步区分出二者的区别。一、continue例1:当小明3岁时不打印年龄,其余年龄正常循环打印。可以看...
- python中的流程控制语句:continue、break 和 return使用方法
-
Python中,continue、break和return是控制流程的关键语句,用于在循环或函数中提前退出或跳过某些操作。它们的用途和区别如下:1.continue(跳过当前循环的剩余部分,进...
- L017:continue和break - 教程文案
-
continue和break在Python中,continue和break是用于控制循环(如for和while)执行流程的关键字,它们的作用如下:1.continue:跳过当前迭代,...
- 作为前端开发者,你都经历过怎样的面试?
-
已经裸辞1个月了,最近开始投简历找工作,遇到各种各样的面试,今天分享一下。其实在职的时候也做过面试官,面试官时,感觉自己问的问题很难区分候选人的能力,最好的办法就是看看候选人的github上的代码仓库...
- 面试被问 const 是否不可变?这样回答才显功底
-
作为前端开发者,我在学习ES6特性时,总被const的"善变"搞得一头雾水——为什么用const声明的数组还能push元素?为什么基本类型赋值就会报错?直到翻遍MDN文档、对着内存图反...
- 2023金九银十必看前端面试题!2w字精品!
-
导文2023金九银十必看前端面试题!金九银十黄金期来了想要跳槽的小伙伴快来看啊CSS1.请解释CSS的盒模型是什么,并描述其组成部分。答案:CSS的盒模型是用于布局和定位元素的概念。它由内容区域...
- 前端面试总结_前端面试题整理
-
记得当时大二的时候,看到实验室的学长学姐忙于各种春招,有些收获了大厂offer,有些还在苦苦面试,其实那时候的心里还蛮忐忑的,不知道自己大三的时候会是什么样的一个水平,所以从19年的寒假放完,大二下学...
- 由浅入深,66条JavaScript面试知识点(七)
-
作者:JakeZhang转发链接:https://juejin.im/post/5ef8377f6fb9a07e693a6061目录由浅入深,66条JavaScript面试知识点(一)由浅入深,66...
- 2024前端面试真题之—VUE篇_前端面试题vue2020及答案
-
添加图片注释,不超过140字(可选)1.vue的生命周期有哪些及每个生命周期做了什么?beforeCreate是newVue()之后触发的第一个钩子,在当前阶段data、methods、com...
- 今年最常见的前端面试题,你会做几道?
-
在面试或招聘前端开发人员时,期望、现实和需求之间总是存在着巨大差距。面试其实是一个交流想法的地方,挑战人们的思考方式,并客观地分析给定的问题。可以通过面试了解人们如何做出决策,了解一个人对技术和解决问...
- 一周热门
- 最近发表
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)
- c语言 switch (34)
- git commit (34)
