每日一题:Redis主节点的Key已过期,但从节点依然读到过期数据
wptr33 2024-12-17 16:47 34 浏览
写在前面
今天小编在文末又更新了职位信息,如没合适的可以在Freemen中自行搜素合适职位信息呦~,祝大家早日获得一份好的工作。
我们知道,大部分的业务场景都是读多写少,为了利用好这个特性,提升Redis集群系统的吞吐能力,通常会采用主从架构、读写分离
如上图所示:其中
- Master节点:负责业务的写操作
- Slave节点:实时同步Master节点的数据,提供读能力
为了提高吞吐量,采用一主多从的架构,将业务的读压力分摊到多台服务器上
上述方案,看似合理,但其实可能存在一定隐患!
一、拉取过期数据
Redis性能高主要得益于纯内存操作,但内存存储介质的成本过高,所以数据的存储有一定的约束。
通常会设置过期时间,对于一些使用不是很频繁的数据,会定期删除,提高资源的利用率。
删除过期数据,Redis提供了两种策略:
1、惰性删除。
也称被动删除,当数据过期后,并不会马上删除。而是等到有请求访问时,对数据检查,如果数据过期,则删除数据。
优点:不需要单独启动额外的扫描线程,减少了CPU资源的损耗。
缺点:大量的过期数据滞留内存中,需要主动触发、检查、删除,否则会一直占用内存资源。
2、定期删除。每隔一段时间,默认100ms,Redis会随机挑选一定数量的Key,检查是否过期,并将过期的数据删除。
你可能会为问了,既然Redis有过期数据删除策略,那为什么还会拉取到已经过期的数据呢?
这要从主从同步讲起了,我们先来看张流程图
当客户端往主库写入数据后,并设置了过期时间,数据会以异步方式同步给从库。
1、如果此时读主库,数据已经过期,主库的惰性删除会发挥作用,主动触发删除操作,客户端不会拿到已过期数据
2、但是如果读从库,则有可能拿到过期数据。原因有两个
原因一:
跟 Redis 的版本有关系,Redis 3.2 之前版本,读从库并不会判断数据是否过期,所以有可能返回过期数据。
解决方案:
升级Redis的版本,至少要3.2 以上版本,读从库,如果数据已经过期,则会过滤并返回空值。
特别注意:
此时同步过来的数据,虽然已经过期,但本着谁生产谁维护的原则,从库并不会主动删除同步的数据,需要依赖于主节点同步过来的key删除命令。
原因二:
跟过期时间的设置方式有关系,我们一般采用 EXPIRE 和 PEXPIRE,表示从执行命令那个时刻开始,往后延长 ttl 时间。严重依赖于 开始时间 从什么时候算起。
- EXPIRE:单位为秒
- PEXPIRE:单位为毫秒
如上图所示,简单描述下过程:
- 主库在 t1 时刻写入一个带过期时间的数据,数据的有效期一直到 t3
- 由于网络原因、或者缓存服务器的执行效率,从库的命令并没有立即执行。一直等到了 t2 才开始执行, 数据的有效期则会延后到 t5
- 如果,此时客户端访问从库,发现数据依然处于有效期内,可以正常使用
解决方案:
可以采用Redis的另外两个命令,EXPIREAT 和 PEXPIREAT,相对简单,表示过期时间为一个具体的时间点。避免了对开始时间从什么时候算起的依赖。
- EXPIREAT:单位为秒
- PEXPIREAT:单位为毫秒
特别注意:
EXPIREAT 和 PEXPIREAT 设置的是时间点,所以要求主从节点的时钟保持一致,需要与NTP 时间服务器保持时钟同步。
主从同步,除了读从库可能拉取到过期数据,还可能遇到数据一致性问题。
继续往下看
二、主从数据不一致
解释下,什么是主从数据不一致?指客户端从库中读取到的值与主库中读取的值不一致!
如图所示:
- 客户端写入主库,值为100
- 然后,主库将值100 同步给 从库
- 接着,客户端又访问主库,将值更新为 200
- 由于主从同步是异步进行的,有一定延迟,假如最新数据还没有同步到从库,那么从库读取的就不是最新值。
从库同步落后的原因主要有两个:
1、主从服务器间的网络传输可能有延迟
2、从库已经收到主库的命令,由于是单线程执行,前面正在处理一些耗时的命令(如:pipeline批处理),无法及时同步执行。
解决方案:
1、主从服务器尽量部署在同一个机房,并保持服务器间的网络良好通畅
2、监控主从库间的同步进度,通过info replication命令 ,查看主库接收写命令的进度信息(master_repl_offset),从库的复制写命令的进度信息(slave_repl_offset)
master_repl_offset - slave_repl_offset
得到从库与主库间的复制进度差
我们可以开发一个监控程序,定时拉取主从服务器的进度信息,计算进度差值。如果超过我们设置的阈值,则通知客户端断开从库的连接,全部访问主库,一定程度上减少数据不一致情况。
待同步进度跟上后,我们再恢复客户端与从节点的读操作。
本文转载自微观技术
今日职位推荐:
SLAM算法工程师
需硕士及以上学历
2年以上2D/3D SLAM算法工作经验
优异者薪资可面议
工作地点:成都
薪资范围:20k-50k
投递方式:Freemen App中定位成都搜索SLAM算法工程师
相关推荐
- MySQL进阶五之自动读写分离mysql-proxy
-
自动读写分离目前,大量现网用户的业务场景中存在读多写少、业务负载无法预测等情况,在有大量读请求的应用场景下,单个实例可能无法承受读取压力,甚至会对业务产生影响。为了实现读取能力的弹性扩展,分担数据库压...
- 3分钟短文 | Laravel SQL筛选两个日期之间的记录,怎么写?
-
引言今天说一个细分的需求,在模型中,或者使用laravel提供的EloquentORM功能,构造查询语句时,返回位于两个指定的日期之间的条目。应该怎么写?本文通过几个例子,为大家梳理一下。学习时...
- 一文由浅入深带你完全掌握MySQL的锁机制原理与应用
-
本文将跟大家聊聊InnoDB的锁。本文比较长,包括一条SQL是如何加锁的,一些加锁规则、如何分析和解决死锁问题等内容,建议耐心读完,肯定对大家有帮助的。为什么需要加锁呢?...
- 验证Mysql中联合索引的最左匹配原则
-
后端面试中一定是必问mysql的,在以往的面试中好几个面试官都反馈我Mysql基础不行,今天来着重复习一下自己的弱点知识。在Mysql调优中索引优化又是非常重要的方法,不管公司的大小只要后端项目中用到...
- MySQL索引解析(联合索引/最左前缀/覆盖索引/索引下推)
-
目录1.索引基础...
- 你会看 MySQL 的执行计划(EXPLAIN)吗?
-
SQL执行太慢怎么办?我们通常会使用EXPLAIN命令来查看SQL的执行计划,然后根据执行计划找出问题所在并进行优化。用法简介...
- MySQL 从入门到精通(四)之索引结构
-
索引概述索引(index),是帮助MySQL高效获取数据的数据结构(有序),在数据之外,数据库系统还维护者满足特定查询算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构...
- mysql总结——面试中最常问到的知识点
-
mysql作为开源数据库中的榜一大哥,一直是面试官们考察的重中之重。今天,我们来总结一下mysql的知识点,供大家复习参照,看完这些知识点,再加上一些边角细节,基本上能够应付大多mysql相关面试了(...
- mysql总结——面试中最常问到的知识点(2)
-
首先我们回顾一下上篇内容,主要复习了索引,事务,锁,以及SQL优化的工具。本篇文章接着写后面的内容。性能优化索引优化,SQL中索引的相关优化主要有以下几个方面:最好是全匹配。如果是联合索引的话,遵循最...
- MySQL基础全知全解!超详细无废话!轻松上手~
-
本期内容提醒:全篇2300+字,篇幅较长,可搭配饭菜一同“食”用,全篇无废话(除了这句),干货满满,可收藏供后期反复观看。注:MySQL中语法不区分大小写,本篇中...
- 深入剖析 MySQL 中的锁机制原理_mysql 锁详解
-
在互联网软件开发领域,MySQL作为一款广泛应用的关系型数据库管理系统,其锁机制在保障数据一致性和实现并发控制方面扮演着举足轻重的角色。对于互联网软件开发人员而言,深入理解MySQL的锁机制原理...
- Java 与 MySQL 性能优化:MySQL分区表设计与性能优化全解析
-
引言在数据库管理领域,随着数据量的不断增长,如何高效地管理和操作数据成为了一个关键问题。MySQL分区表作为一种有效的数据管理技术,能够将大型表划分为多个更小、更易管理的分区,从而提升数据库的性能和可...
- MySQL基础篇:DQL数据查询操作_mysql 查
-
一、基础查询DQL基础查询语法SELECT字段列表FROM表名列表WHERE条件列表GROUPBY分组字段列表HAVING分组后条件列表ORDERBY排序字段列表LIMIT...
- MySql:索引的基本使用_mysql索引的使用和原理
-
一、索引基础概念1.什么是索引?索引是数据库表的特殊数据结构(通常是B+树),用于...
- 一周热门
-
-
C# 13 和 .NET 9 全知道 :13 使用 ASP.NET Core 构建网站 (1)
-
程序员的开源月刊《HelloGitHub》第 71 期
-
详细介绍一下Redis的Watch机制,可以利用Watch机制来做什么?
-
假如有100W个用户抢一张票,除了负载均衡办法,怎么支持高并发?
-
Java面试必考问题:什么是乐观锁与悲观锁
-
如何将AI助手接入微信(打开ai手机助手)
-
redission YYDS spring boot redission 使用
-
SparkSQL——DataFrame的创建与使用
-
一文带你了解Redis与Memcached? redis与memcached的区别
-
如何利用Redis进行事务处理呢? 如何利用redis进行事务处理呢英文
-
- 最近发表
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)
- c语言 switch (34)
- git commit (34)